Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the Power Hardware in the Loop (PHIL) approach for an autonomous power system analysis based on the synchronous generator model incorporating magnetic saturation effects. The model was prepared in the MATLAB/Simulink environment and then compiled into the C language for the PHIL platform implementation. The 150 kVA bidirectional DC/AC commercial-grade converter was used to emulate the synchronous generator. It was controlled by the real-time simulation control unit with the prepared synchronous generator model incorporating magnetic saturation effects. The proposed approach was validated on the 125 kVA synchronous generator connected to the active and reactive loads of different values for the steady-state and the transient-state performance studies.
Czasopismo
Rocznik
Tom
Strony
281--297
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- Gdańsk University of Technology, Faculty of Electrical and Control Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Electrical and Control Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Science, ul. Oczapowskiego 11, 10-710 Olsztyn, Poland
autor
- Gdańsk University of Technology, Faculty of Electrical and Control Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Electrical and Control Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] Nadarajan S., Panda S.K., Bhangu B., Gupta A.K., Online Model-Based Condition Monitoring for Brushless Wound-Field Synchronous Generator to Detect and Diagnose Stator Windings Turn-to-Turn Shorts Using Extended Kalman Filter, IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 3228–3241 (2016), DOI: 10.1109/TIE.2016.2535959.
- [2] Racewicz S., Kutt F., Sienkiewicz Ł., Power Hardware-In-the-Loop Approach for Autonomous Power Generation System Analysis, Energies 2022, vol. 15, no. 5, p. 1720 (2022), DOI: 10.3390/en15051720.
- [3] Kumar D., Zare F., A Comprehensive Review of Maritime Microgrids: System Architectures, Energy Efficiency, Power Quality, and Regulations, IEEE Access, vol. 7, pp. 67249–67277 (2019), DOI: 10.1109/ACCESS.2019.2917082.
- [4] Noon J., Song H., Wen B., Burgos R., Cvetkovic I., Boroyevich D., Srdic S., Pammer G., A Power Hardware-in-the-Loop Test bench for Aerospace Applications, Conference Proceedings – IEEE Applied Power Electronics Conference and Exposition – APEC, vol. 2020-March, pp. 2884–2891 (2020), DOI: 10.1109/APEC39645.2020.9124299.
- [5] Faizan Shaikh M., Kim H.J., Lee S.B., Lim C., Online Airgap Flux Based Diagnosis of Rotor Eccentricity and Field Winding Turn Insulation Faults in Synchronous Generators, IEEE Transactions on Energy Conversion, vol. 37, no. 1 (2022), DOI: 10.1109/TEC.2021.3092198.
- [6] Lauss G., Feng Z., Syed M.H., Kontou A., Paola A.D., Paspatis A., Kotsampopoulos P., A Framework for Sensitivity Analysis of Real-Time Power Hardware-in-the-Loop (PHIL) Systems, IEEE Access, vol. 10, pp. 101305–101318 (2022), DOI: 10.1109/ACCESS.2022.3206780.
- [7] Jhuma U.K., Mekhilef S., Ahmad S., Islam J., Jesan J.R., Billah M.M., The Impact of Synchronous Generator on Voltage Sag Mitigation in Power System Network, 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies, GUCON 2021 (2021), DOI: 10.1109/GUCON50781.2021.9573961.
- [8] Monieta J., Nowicki M., Experimental manners of an interference reduction of chosen measuring signals of a generating set in conditions of a marine power plants, Diagnostyka, vol. 19, no. 1, pp. 93–102 (2018), DOI: 10.29354/diag/82975.
- [9] Lee J.S., Choi G., Modeling and hardware-in-the-loop system realization of electric machine drives — A review, CES Transactions on Electrical Machines and Systems, vol. 5, no. 3, pp. 194–201 (2021), DOI: 10.30941/CESTEMS.2021.00023.
- [10] Lundstrom B., Salapaka M.V., Optimal Power Hardware-in-the-Loop Interfacing: Applying Modern Control for Design and Verification of High-Accuracy Interfaces, IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10388–10399 (2021), DOI: 10.1109/TIE.2020.3032918.
- [11] Hong Q., Abdulhadi I., Tzelepis D., Roscoe A., Marshall B., Booth C., Realization of High Fidelity Power-Hardware-in-the-Loop Capability Using a MW-Scale Motor-Generator Set, IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6835–6844 (2020), DOI: 10.1109/TIE.2019.2937038.
- [12] Lauss G., Strunz K., Accurate and Stable Hardware-in-the-Loop (HIL) Real-Time Simulation of Integrated Power Electronics and Power Systems, IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10920–10932 (2021), DOI: 10.1109/TPEL.2020.3040071.
- [13] Lauss G.F., Faruque M.O., Schoder K., Dufour C., Viehweider A., Langston J., Characteristics and design of power hardware-in-the-loop simulations for electrical power systems, IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 406–417 (2016), DOI: 10.1109/TIE.2015.2464308.
- [14] Lehfuss F., Lauss G., Kotsampopoulos P., Hatziargyriou N., Crolla P., Roscoe A., Comparison of multiple power amplification types for power Hardware-in-the-Loop applications, 2012 IEEE Workshop on Complexity in Engineering, COMPENG 2012 – Proceedings, pp. 95–100 (2012), DOI: 10.1109/CompEng.2012.6242959.
- [15] Yang L., Wang J., Ma Y., Wang J., Zhang X., Tolbert L.M., Wang F.F., Tomsovic K., Three-Phase Power Converter-Based Real-Time Synchronous Generator Emulation, IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1651–1665 (2017), DOI: 10.1109/TPEL.2016.2553168.
- [16] Rosenberger R., Huss S.A., A systems theoretic approach to behavioural modeling and simulation of analog functional blocks, Proceedings – Design, Automation and Test in Europe, DATE, pp. 721−728 (1998), DOI: 10.1109/DATE.1998.655938.
- [17] Jomier T., Technical Report (MOET-FP6-030861), Tech. Rep., AIRBUS OPERATIONS S.A.S. (2009).
- [18] Ashourianjozdani M., Lopes L.A., Pillay P., Power electronic converter based pmsg emulator: A testbed for renewable energy experiments, IEEE Transactions on Industry Applications, vol. 54, pp. 3626–3636 (2018), DOI: 10.1109/TIA.2018.2819618.
- [19] El-Sousy F.F.M., Aziz G.A.A., Amin M., Gaber K., Mohammed O.A., A high-speed microturbine pma-synrg emulation using power hardware-in-the-loop for wind energy conversion systems, IEEE Access, vol. 8, pp. 194612–194622 (2020), DOI: 10.1109/ACCESS.2020.3033485.
- [20] Kar N.C., El-Serafi A.M., Measurement of the saturation characteristics in the quadrature axis of synchronous machines, IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 690–698 (2006), DOI: 10.1109/TEC.2006.877368.
- [21] IEEE Std 115-1995, 115-2009 – IEEE Guide for Test Procedures for Synchronous Machines Part I – Acceptance and Performance Testing Part II – Test Procedures and Parameter Determination for Dynamic Analysis, IEEE: New York, NY, USA (2010), DOI: 10.1109/IEEESTD.2020.9020274.
- [22] Racewicz S., Kutt F., Michna M., Sienkiewicz Ł., Comparative Study of Integer and Non-Integer Order Models of Synchronous Generator, Energies, vol. 13, no. 17, 4416 (2020), DOI: 10.3390/en13174416.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ac1e04f-f820-47ad-9cdc-adf2762ab387