PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation of surface flow from subsurface flow in catchments using runoff coefficient

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Separating surface flow (SF) from subsurface flow (SSF) based on direct runoff measurements in river gauges is an important issue in hydrology. In this study, we developed a simple and practical method, based on runoff coefficient (RC), for separating SF from SSF. RC depends mainly on soil texture, land use and land cover, but we also considered the effect of slope and rainfall intensity. We assessed our RC-based method for three different soil types by comparing the value obtained with laboratory rainfall simulator data. The correlation coefficient between observed and calculated data exceeded 0.93 and 0.63 when estimating SF and SSF, respectively. The method was then used to separate SF and SSF in two catchments (Heng-Chi and San-Hsia) in Northern Taiwan, and the results were compared with those produced by the geomorphological instantaneous unit hydrograph (GIUH) model. Test revealed that, if RC is calculated accurately, the proposed method can satisfactorily separate SF from SSF at catchment scale.
Czasopismo
Rocznik
Strony
2363--2376
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Department of Civil Engineering, Islamic Azad University, Estahban Branch, Fars, Iran
autor
  • Department of Civil Engineering, Islamic Azad University, Estahban Branch, Fars, Iran
  • Water, Energy and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
  • Department of Economics, Engineering, Society and Business Organization (DEIM), Tuscia University, Via S. Camillo de Lellis snc, 01100 Viterbo, VT, Italy
Bibliografia
  • 1. Akan AO, Houghtalen RJ (2003) Urban hydrology, hydraulics, and stormwater quality: engineering applications and computer modeling. Wiley
  • 2. Ameli AA, Craig JR, McDonnell JJ (2015) Are all runoff processes the same? Numerical experiments comparing a Darcy-Richards solver to an overland flow-based approach for subsurface storm runoff simulation. Water Resour Res 51(12):10008–10028
  • 3. Brown VA, McDonnell JJ, Burns DA, Kendall C (1999) The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. J Hydrol 217(3–4):171–190
  • 4. Chang CH, Lee KT (2008) Analysis of geomorphologic and hydrological characteristics in watershed saturated areas using topographic-index threshold and geomorphology-based runoff model. Hydrol Process Int J 22(6):802–812
  • 5. Chen Z, Govindaraju RS, Kavvas ML (1994a) Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields: 1. Dev Models Water Resour Res 30(2):523–533
  • 6. Chen Z, Govindaraju RS, Kavvas ML (1994b) Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields 2. Numer Simul Water Resour Res 30(2):535–548
  • 7. Chow V, Maidment DR, Mays LW (1962) Applied hydrology. J Eng Educ 308:1959
  • 8. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York
  • 9. Dehghanian N, Saeid Mousavi Nadoushani S, Saghafian B, Damavandi MR (2020) Evaluation of coupled ANN-GA model to prioritize flood source areas in ungauged watersheds. Hydrol Res 51(3):423–442
  • 10. Essig ET, Corradini C, Morbidelli R, Govindaraju RS (2009) Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results. J Hydrol 374(1–2):30–42
  • 11. Fariborzi H, Sabzevari T, Noroozpour S, Mohammadpour R (2019) Prediction of the subsurface flow of hillslopes using a subsurface time-area model. Hydrogeol J 27(4):1401–1417
  • 12. Foks SS, Raffensperger JP, Penn CA, Driscoll JM (2019) Estimation of base flow by optimal hydrograph separation for the conterminous United States and implications for national-extent hydrologic models. Water 11(8):1629
  • 13. Harris DM, McDonnell JJ, Rodhe A (1995) Hydrograph separation using continuous open system isotope mixing. Water Resour Res 31(1):157–171
  • 14. Hursh CR, Brater EF (1941) Separating storm-hydrographs from small drainage-areas into surface-and subsurface-flow. EOS Trans Am Geophys Union 22(3):863–871
  • 15. Johst M, Casper MC, Muller C, Schneider R (2013) Separation of stormflow hydrographs in surface and subsurface flow by perceptual based modelling of channel inflow components. Open Hydrol J 7(1):66
  • 16. Keshtkaran P, Sabzevari T, Karami Moghadam M (2018) Estimation of runoff in ungauged catchments using the Nash non-dimensional unit hydrograph. Case study: Ajay and Kasilian catchments
  • 17. Kim NW, Shin MJ (2018) Estimation of peak flow in ungauged catchments using the relationship between runoff coefficient and curve number. Water 10(11):1669
  • 18. Kim NW, Shin MJ, Lee JE (2016) Application of runoff coefficient and rainfall-intensity-ratio to analyze the relationship between storm patterns and flood responses. Hydrol Earth Syst Sci Discuss 66:1–48
  • 19. Lee KT, Chang CH (2005) Incorporating subsurface-flow mechanism into geomorphology-based IUH modeling. J Hydrol 311(1–4):91–105
  • 20. Lee J, Kwak C, Park H (2015) Estimation of runoff coefficient through infiltration analysis by soil type. J Korean Soc Hazard Mitig 15(4):87–96
  • 21. Liu YB, De Smedt F (2004) WetSpa extension, a GIS-based hydrologic model for flood prediction and watershed management, vol 1. Vrije Universiteit Brussel, Belgium, p 108
  • 22. Menberu MW, Torabi Haghighi A, Ronkanen A, Kvaerner J, Kløve B (2014) Runoff curve numbers for peat-dominated watersheds. J Hydrol Eng 20(4):66
  • 23. Mishra SK, Singh VP (2013) Soil conservation service curve number (SCS-CN) methodology, vol 42. Springer
  • 24. Morbidelli R, Saltalippi C, Flammini A, Cifrodelli M, Corradini C, Govindaraju RS (2015) Infiltration on sloping surfaces: laboratory experimental evidence and implications for infiltration modeling. J Hydrol 523:79–85
  • 25. Morbidelli R, Saltalippi C, Flammini A, Govindaraju RS (2018) Role of slope on infiltration: a review. J Hydrol 557:878–886
  • 26. Petroselli A (2020) A generalization of the EBA4SUB rainfall-runoff model considering surface and subsurface flow. Hydrol Sci J 65(14):2390–2401
  • 27. Petroselli A, Grimaldi S (2018) Design hydrograph estimation in small and fully ungauged basins: a preliminary assessment of EBA4SUB framework. J Flood Risk Manag 11:S197–S210
  • 28. Petroselli A, Asgharinia S, Sabzevari T, Saghafian B (2020a) Comparison of design peak flow estimation methods for ungauged basins in Iran. Hydrol Sci J 65(1):127–137
  • 29. Petroselli A, Piscopia R, Grimaldi S (2020b) Design discharge estimation in small and ungauged basins: EBA4SUB framework sensitivity analysis. J Agric Eng LI:1040
  • 30. Piscopia R, Petroselli A, Grimaldi S (2015) A software package for the prediction of design flood hydrograph in small and ungauged basins. J Agric Eng XLVI 432:74–84
  • 31. Ribolzi O, Patin J, Bresson LM, Latsachack KO, Mouche E, Sengtaheuanghoung O, Valentin C (2011) Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology 127(1–2):53–63
  • 32. Robinson JS, Sivapalan M (1996) Instantaneous response functions of overland flow and subsurface stormflow for catchment models. Hydrol Process 10(6):845–862
  • 33. Rodriguez-Iturbe I, Valdes JB (1979) The geomorphologic structure of hydrologic response. Water Resour Res 15(6):1409–1420
  • 34. Sabzevari T (2017) Runoff prediction in ungauged catchments using the gamma dimensionless time-area method. Arab J Geosci 10(6):131
  • 35. Sabzevari T, Noroozpour S (2014) Effects of hillslope geometry on surface and subsurface flows. Hydrogeol J 22(7):1593–1604
  • 36. Sabzevari T, Fattahi MH, Mohammadpour R, Noroozpour S (2013) Prediction of surface and subsurface flow in catchments using the GIUH. J Flood Risk Manag 6(2):135–145
  • 37. Singh VP (1988) Hydrologic systems. Volume I: rainfall-runoff modeling. Prentice Hall, Englewood Cliffs, 480
  • 38. Tarboton DG (2003) Rainfall-runoff processes. Utah State Univ 1(2):66
  • 39. Tekeli YI, Şorman Ü (2003) Separation of hydrograph components using stable isotopes case study: the Güvenç Basin, Ankara. Turk J Eng Environ Sci 27(6):383–396
  • 40. Tiefan P, Jianmei L, Jinzhong L, Anzhi W (2005) A modified subsurface stormflow model of hillsides in forest catchment. Hydrol Process Int J 19(13):2609–2624
  • 41. Troch PA, Mancini M, Paniconi C, Wood EF (1993) Evaluation of a distributed catchment scale water balance model. Water Resour Res 29(6):1805–1817
  • 42. Wels C, Cornett RJ, Lazerte BD (1991) Hydrograph separation: a comparison of geochemical and isotopic tracers. J Hydrol 122(1–4):253–274
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ac15517-0492-4990-8765-43435a64c7c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.