PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Impact of Protective Relays on Voltage Sag Index

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ przekaźników ochronnych na współczynnik zapadu napięcia
Języki publikacji
EN
Abstrakty
EN
This paper provides the probability-assessment analysis on the characteristic value of the voltage sag by using Monte Carlo stochastic modelling method to stimulate the randomness of the short circuit fault. Furthermore, this article simulates the influence of the protection devices on the voltage sag to ensure the authenticity and the referential reliability. A system with inverse-time protection devices equipped on each lines which could coordinate together are designed to cut off the short-circuit fault. The voltage sag of the designed system is evaluated by the pre-and post system average RMS variation frequency index, and the voltage sag index is compared with the ITIC curves.The simulation results demonstrated that the inverse-curve relay protection equipments are well-coordinated, and the severity and the range of the voltage sag are influenced by the cooperation of the equipped inverse time protection devices.
PL
W artykule przedstawiono metodę szacowania prawdopodobieństwa wystąpienia zapadu napięcia na podstawie analizy jego charakterystycznych parametrów zamodelowanych metodą Monte Carlo. Ponad to, w celu weryfikacji skuteczności, dokonano symulacji wpływu urządzeń ochronnych na zapady napięcia. Zaprojektowano także system z urządzeniami umożliwiającymi odizolowanie zwarcia w obwodzie od reszty sieci. Wyznaczono współczynnik częstotliwościowy zmienności wartości średniej RMS zapadów napięcia w proponowanym układzie, który następnie porównano z krzywymi ITIC. Przeprowadzone badania symulacyjne potwierdziły skuteczność i szybkość działania systemu.
Rocznik
Strony
59--62
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University
  • Institute of Information Technology Luoyang Normal College
autor
  • Power Supply of Qingdao Company, Shandong Electric Power Corporation
autor
  • School of foreign language, Shanghai Jiao Tong University
Bibliografia
  • [1] Dehini R., Bassou A.,Chellali B., Generation of voltage references using Multilayer Feed Forward Neural Network, Przeglad Elektrotechniczny, 88(2012), No. 4A, 289-292.
  • [2] Ibrahim A. A., Mohamed A., Shareef H., et al., A new approach for optimal power quality monitor placement in power system considering system topology, Przeglad Elektrotechniczny, 88(2012), No. 9A, 272-276.
  • [3] Won D.J., Ahn S.J.,Moon S.I., A modified sag characterization using voltage tolerance curve for power quality diagnosis, IEEE Trans. On Power Delivery, 20(2005), No. 4, 2638-2643.
  • [4] Martinez J.A.,Martin-Arnedo J., Voltage sag stochastic prediction using an electromagnetic transients program, IEEE Trans. On Power Delivery, 19(2004), No. 4, 1975-1982.
  • [5] Yunting S., Yongji G.,Ruihua Z., Probabilistic Assessment of Voltage Sags and Momentary Interruption Based on MONTECARLO Simulation, Automation of Electric Power Systems, 27(2003), No. 18, 47-51.
  • [6] Martinez J.A.,Martin-Arnedo J., Voltage sag analysis using an electromagnetic transients program, in Power Engineering Society Winter Meeting,(2002). 1135-1140.
  • [7] Martinez J.A.,Martin-Arnedo J., Voltage sag studies in distribution Networks-part I: system modeling, IEEE Trans. On Power Delivery, 21(2006), No. 3, 1670-1678.
  • [8] Martinez J.A.,Martin-Arnedo J., Voltage sag studies in distribution networks-part II: voltage sag assessment, IEEE Trans. On Power Delivery, 21(2006), No. 3, 1679-1688.
  • [9] Martinez J.A.,Martin-Arnedo J., Voltage sag studies in distribution Networks-part III: Voltage sag index calculation, IEEE Trans. On Power Delivery, 21(2006), No. 3, 1689-1697.
  • [10] Benmouyal G., Meisinger M., Burnworth J., et al., IEEE standard inverse-time characteristic equations for overcurrent relays, IEEE Trans. On Power Delivery, 14(1999), No. 3, 868-872.
  • [11] Tan JC, McLaren PG, Jayasinghe RP, et al., Software model for inverse time overcurrent relays incorporating IEC and IEEE standard curves,(2002). 37-41 vol. 1.
  • [12] Standard B., Electromagnetic compatibility (EMC) Testing and measurement techniques, voltage dips, short Interruptions and voltage variations immunity tests, BS END, 61(000-4.
  • [13] Urdaneta A.J., Restrepo H., Marquez S., et al., Coordination Of directional overcurrent relay timing using linear programming, IEEE Trans. On Power Delivery, 11(1996), No. 1, 122-129.
  • [14] Wang J., Chen S.,Lie TT, System voltage sag performance estimation, IEEE Trans. On Power Delivery, 20(2005), No. 2, 1738-1747.
  • [15] Taylor C.W., Concepts of undervoltage load shedding for voltage stability, IEEE Trans. On Power Delivery, 7(1992), No. 2, 480-488.
  • [16] Gupta CP,Milanovic J.V., Probabilistic assessment of equipment trips due to voltage sags, IEEE Trans. On Power Delivery, 21(2006), No. 2, 711-718.
  • [17] Aung M.T.,Milanovic J.V., Stochastic prediction of voltage sags by considering the probability of the failure of the protection system, IEEE Trans. On Power Delivery, 21(2006), No. 1, 322-329.
  • [18] Han W., Chenzhao YU,Jianwen ZHANG X.C.A.I., Control of Voltage Source Inverter with an LCL Filter without Voltage Sensors, Przeglad Elektrotechniczny, 88(2012), No. 5b, 119-122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ac05586-b638-470b-9abf-1964a98cc8fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.