Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Flow resistance in catalytic fillings of structural reactor
Języki publikacji
Abstrakty
Przedmiotem badań była charakterystyka zjawisk przepływowych w krótkokanałowych wypełnieniach strukturalnych nowej generacji, tzw. struktur opływowych. Są to struktury o zmodyfikowanym kształcie przekroju poprzecznego ścianek, uformowanym na wzór skrzydła samolotu. Badaniom poddano nośniki wydrukowane ze stali 316 metodą SLM o sześciokątnych kształtach przekroju poprzecznego i długościach kanałów równych 3, 6 i 12 mm.
The increasing emission of gases considered harmful to the environment (e.g. methane, nitrogen and sulfur oxides, VOCs) and the resulting changes in the natural environment are the reason for searching for and developing technologies that reduce the amount of gases released from anthropological sources [1, 2]. One way to limit this problem is to use catalytic reactors, in which the process of cleaning industrial waste gases is carried out (e.g. by oxidation). Two types of reactors dominate in the industry: packed bed reactors and monolithic reactors. The first solution provides much more intensive heat and mass transport, while the second is characterized by much lower flow resistance. In the case of monolithic reactors, the fluid flow through the channels is laminar, due to their small diameters. The velocity, temperature and concentration profiles over the majority of the channel length are then fully developed (parabolic), which means that heat and mass transport takes place along a path comparable to the equivalent radius of the channel. Intensification of heat conduction and mass transfer in monolithic reactors is possible by shortening its length. This solution is based on selecting the length of the structure in such a way that the developing laminar flow occurs over the entire or majority of the channel length. Heat and mass transport then takes place only through a relatively thin boundary layer, which results in higher heat and mass transfer coefficients and higher flow resistance coefficients compared to fully developed laminar flow. The aim of the research was to characterize the flow and transport phenomena of new generation short-channel structured carriers, the so-called streamlined structures. These are short-channel structures (short monoliths) with a modified cross-section of the walls, shaped like an airplane wing. The tests were carried out on carriers manufactured from 316 steel using the SLM (Selective Laser Melting) additive method. Hexagonal channel cross-sectional shapes with lengths of 3, 6 and 12 mm were prepared. Experimental tests were carried out to determine pressure drop coefficient; on this basis, influence was determined of the channel length and crosssectional shape on the Fanning friction factor. The correlations describing the experimental results were derived. Since, so far, there is no work on short-channel catalytic carriers with a streamlined wall shape, the obtained experimental results were compared with the correlations for short-channel structures available in the literature. It was found that the Fanning friction factors for the tested structures are higher or close to the literature ones. Moreover, flow resistance for streamlined structures are lower compared to a packed bed, and higher than for a monolith.
Słowa kluczowe
Rocznik
Tom
Strony
19--41
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
autor
- Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
autor
- Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
- [1] A. Mozaffar, Y.L. Zhang, Atmospheric Volatile Organic Compounds (VOCs) in China: Atmospheric Volatile Organic Compounds (VOCs) in China: a Review, Current Pollution Reports 6(3) (2020) 250-263, DOI: 10.1007/s40726-020-00149-1.
- [2] EPA, Technical Overview of Volatile Organic Compounds, 2023. https://www.epa.gov/indoor-airquality-iaq/technical-overview-volatile-organic-compounds#2. (dostęp: 27.04.23)
- [3] J. Dumesic, G. Huber, M. Boudart, Principles of Heterogeneous Catalysis, Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag.2008.
- [4] A. Cybulski, J.A. Moulijn, Monoliths in heterogeneous catalysis, Catalysis Reviews-Science and Engineering 36(2) (1994) 179-270. https://doi.org/10.1080/01614949408013925
- [5] K.G. Allen, T.W. von Backstrom, D.G. Kroger, Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness, Powder Technology, 246 (2013) 590-600. https://doi.org/10.1016/j.powtec.2013.06.022.
- [6] A. Kołodziej, J. Łojewska, Short-channel structured reactor for catalytic combustion: Design and evaluation, Chemical Engineering and Processing 46(7) (2007) 637-648. https://doi.org/10.1016/j.cep.2006.08.009.
- [7] A. Kołodziej, J. Łojewska, J. Ochonska, T. Lojewski, Short-channel structured reactor: Experiments versus previous theoretical design, Chemical Engineering and Processing 50(8) (2011) 869-876. https://doi.org/10.1016/j.cep.2011.05.003.
- [8] R.K. Shah, A.L. London, Laminar flow forced convection in ducts, Academic Press, New York, 1978. https://doi.org/10.1016/B978-0-12-020051-1.50015-2.
- [9] C.C. Templis, N.G. Papayannakos, Mass and Heat Transfer Coefficients in Automotive Exhaust Catalytic Converter Channels, Catalysts 9(6) (2019) 21. https://doi.org/10.3390/catal9060507.
- [10] C.J. Bennett, R.E. Hayes, S.T. Kolaczkowski, W.J. Thomas, An experimental and theoreticalstudy of a catalytic monolith to control automobile exhaust emissions, Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 439(1907) (1992) 465-483. https://doi.org/10.1098/rspa.1992.0162.
- [11] R.E. Hayes, S.T. Kolaczkowski, A study of Nusselt and Sherwood numbers in a monolith reactor, Catalysis Today 47(1-4) (1999) 295-303. https://doi.org/10.1016/s0920-5861(98)00310-1.
- [12] I. Cornejo, G. Cornejo, P. Nikrityuk, R.E. Hayes, Entry length convective heat transfer in a monolith: The effect of upstream turbulence, International Journal of Thermal Sciences 138 (2019) 235-246. https://doi.org/10.1016/j.ijthermalsci.2018.12.044.
- [13] N. Gupta, V. Balakotaiah, Heat and mass transfer coefficients in catalytic monoliths, Chemical Engineering Science 56(16) (2001) 4771-4786. https://doi.org/10.1016/s0009-2509(01)00134-8.
- [14] I. Cornejo, P. Nikrityuk, R.E. Hayes, Heat and mass transfer inside of a monolith honeycomb: From channel to full size reactor scale, Catalysis Today 383 (2022) 110-122. https://doi.org/10.1016/j.cattod.2020.10.036.
- [15] M. Everts, J.P. Meyer, Heat transfer of developing and fully developed flow in smooth horizontal tubes in the transitional flow regime, International Journal of Heat and Mass Transfer 117 (2018) 1331-1351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.071.
- [16] R.K. Shah, Laminar-flow friction and forced-convection heat-transfer in ducts of arbitrary geometry, International Journal of Heat and Mass Transfer 18(7-8) (1975) 849-862. https://doi.org/10.1016/0017-9310(75)90176-3.
- [17] R.K. Shah, A.L. London, Laminar flow forced convection in ducts, Academic Press, New York, 1978. https://doi.org/10.1016/B978-0-12-020051-1.50015-2.
- [18] O. Turgut, Numerical investigation of laminar flow and heat transfer in hexagonal ducts under isothermal and constant heat flux boundary conditions, Iranian Journal of Science and Technology-Transactions of Mechanical Engineering 38(M1) (2014) 45-56.
- [19] H. Schlichting, Boundary-Layer Theory, 7th edition ed., New York, McGraw-Hill Book Company, 1979.
- [20] H. Heisler, 14 - Vehicle body aerodynamics,, in: H. Heisler (Ed.), Advanced Vehicle Technology, Butterworth-Heinemann2002, pp. 584-634. https://doi.org/https://doi.org/10.1016/B978-075065131-8/50015-4.
- [21] E.N. Landis, D.T. Keane, X-ray microtomography, Materials Characterization 61(12) (2010) 1305-1316. https://doi.org/10.1016/j.matchar.2010.09.012.
- [22] B. Leszczyński, A. Gancarczyk, A. Wróbel, M. Piątek, J. Łojewska, A. Kołodziej, R. Pedrys, Global and Local Thresholding Methods Applied to X-ray Microtomographic Analysis of Metallic Foams, Journal of Nondestructive Evaluation 35(2) (2016) 9. https://doi.org/10.1007/s10921-016-0352-x.
- [23] A. Gancarczyk, K. Sindera, M. Iwaniszyn, M. Piatek, W. Macek, P.J. Jodłowski, S. Wroński, M. Sitarz, J. Łojewska, A. Kołodziej, Metal Foams as Novel Catalyst Support in Environmental Processes, Catalysts 9(7) (2019) 13. https://doi.org/10.3390/catal9070587.
- [24] Y. Asako, H. Nakamura, M. Faghri, Developing laminar-flow and heat-transfer in the entrance region of regular polygonal ducts, International Journal of Heat and Mass Transfer 31(12) (1988) 2590-2593.
- [25] O. Turgut, Numerical investigation of laminar flow and heat transfer in hexagonal ducts under isothermal and constant heat flux boundary conditions, Iranian Journal of Science and Technology-Transactions of Mechanical Engineering 38(M1) (2014) 45-56.
- [26] T. Yilmaz, General equations for pressure-drop for laminar-flow in ducts of arbitrary crosssections, Journal of Energy Resources Technology-Transactions of the Asme 112(4) (1990) 220-223. https://doi.org/10.1115/1.2905761
- [27] Y.S. Muzychka, M.M. Yovanovich, Laminar forced convection heat transfer in the combined entry region of non-circular ducts, Journal of Heat Transfer-Transactions of the Asme 126(1) (2004) 54-61. https://doi.org/10.1115/1.1643752.
- [28] S.R. Gundlapally, V. Balakotaiah, Heat and mass transfer correlations and bifurcation analysis of catalytic monoliths with developing flows, Chemical Engineering Science 66(9) (2011) 1879-1892. https://doi.org/10.1016/j.ces.2011.01.045.
- [29] M. Iwaniszyn, M. Piątek, A. Gancarczyk, P.J. Jodłowski, J. Łojewska, A. Kołodziej, Flow resistance and heat transfer in short channels of metallic monoliths: Experiments versus CFD, International Journal of Heat and Mass Transfer 109 (2017) 778-785. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.019.
- [30] R.D. Hawthorn, Afterburner catalysis-effects of heat and mass transfer between gas and catalyst surface, AIChE Symp. Ser., 1974, pp. 428-438.
- [31] K. Sindera, M. Iwaniszyn, P.J. Jodłowski, Momentum Transfer in Short-Channel Structures of Hexagonal Channel Cross-Section Shape: Experiments vs. CFD, Catalysts 11(9) (2021). https://doi.org/10.3390/catal11091036.
- [32] M. Uberoi, C.J. Pereira, External mass transfer coefficients for monolith catalysts, Industrial & Engineering Chemistry Research 35(1) (1996) 113-116. https://doi.org/10.1021/ie9501790.
- [33] S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress 48(2) (1952) 89-94.
- [34] J.L. Williams, Monolith structures, materials, properties and uses, Catalysis Today 69(1-4) (2001) 3-9. https://doi.org/10.1016/s0920-5861(01)00348-0.
- [35] A.K. Saroha, K.D.P. Nigam, Trickle bed reactors, Reviews in Chemical Engineering 12(3-4) (1996) 207-347. https://doi.org/10.1515/revce.1996.12.3-4.207.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1abfa55d-10d0-43f7-baac-97dc81b30028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.