PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel energy-absorbing auxetic sandwich panel with detached corrugated aluminium layers

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sandwich panels have the potential to serve as plastically deforming sacrificial structures that can absorb blast or impact energies. Auxetic sandwich panels with welded or bolted corrugated layers have, as far as the author is aware, had their blast behaviour thoroughly addressed in the literature. Therefore, the objective of this numerical analysis was to create a novel, low-cost, simple-to-build graded sandwich panel with detached corrugated layers that may be employed as a multi-purpose sacrificial protective structure against a wide range of blast threats. The suggested sandwich panel has overall dimensions of 330x330x150mm and is made of six detached aluminium (AL6063-T4) layers enclosed in a steel (Weldox 460E) frame. With different stepwise plate thicknesses of 0.4, 0.8, and 1.2mm for each pair of layers, the six layers all have the same re-entrant auxetic geometry. Utilising the Abaqus/Explicit solver, the numerical analysis was carried out. A wide variety of blast intensities (4, 7, 11, 13, and 16 MPa peak reflected over-pressures) were tested on the suggested auxetic sandwich panel, and the results showed uniform progressive collapse, a superior decrease in reaction forces, and greater energy dissipation compared to comparable non-auxetic topologies. The innovative sandwich panel design has potential uses for both military and civic structures that need to be protected.
Rocznik
Strony
art. no. 2023215
Opis fizyczny
Bibliogr. 63 poz., il. kolor., rys., wykr.
Twórcy
  • Poznan University of Technology, Poznan, Poland
Bibliografia
  • 1. H. Draganić, G. Gazić, D. Varevac; Experimental investigation of design and retrofit methods for blast load mitigation-A state-of-the-art review; Engineering Structures, 2019, 190, 189-209
  • 2. P. Sielicki, T. Łodygowski, H. Al-Rifaie, W. Sumelka; Designing of Blast Resistant Lightweight Elevation System-Numerical Study; Procedia Engineering, 2017, 172, 991-998
  • 3. S. A. Mazek; Performance of sandwich structure strengthened by pyramid cover under blast effect; Structural Engineering and Mechanics, 2014, 50, 471-486
  • 4. S. Lotfi, S. M. Zahrai; Blast behavior of steel infill panels with various thickness and stiffener arrangement; Structural Engineering and Mechanics, 2018, 65, 587-600
  • 5. H. Al-Rifaie, W. Sumelka; Numerical analysis of reaction forces in blast resistant gates; Structural Engineering and Mechanics, 2017, 63, 347-359
  • 6. R. Alberdi, J. Przywara, K. Khandelwal; Performance evaluation of sandwich panel systems for blast mitigation; Engineering Structures, 2013, 56, 2119-2130
  • 7. H. Al-Rifaie; Application of Passive Damping Systems in Blast Resistant Gates; I ed. Poznan, Poland: Wydawnictwo Politechniki Poznańskiej, 2019
  • 8. H. Al-Rifaie, W. Sumelka; The developement of a new shock absorbing Uniaxial Graded Auxetic Damper (UGAD); Materials, 2019, 12, 2573
  • 9. N. Novak, M. Vesenjak, Z. Ren; Auxetic cellular materials-a review; Strojniški vestnik-Journal of Mechanical Engineering, 2016, 62, 485-493
  • 10. N. Novak, L. Starčevič, M. Vesenjak, Z. Ren; Blast response study of the sandwich composite panels with 3D chiral auxetic core; Composite Structures, 2019, 210, 167-178
  • 11. P. Baranowski, J. Malachowski, L. Mazurkiewicz; Numerical and experimental testing of vehicle tyre under impulse loading conditions; International Journal of Mechanical Sciences, 2016, 106, 346-356
  • 12. Z. Nowak, M. Nowak, R. Pecherski, M. Potoczek, R. Sliwa; Numerical simulations of mechanical properties of alumina foams based on computed tomography; Coupled Field Problems and Multiphase Materials, 2017, 107
  • 13. E. Andrews, W. Sanders, L. J. Gibson; Compressive and tensile behaviour of aluminum foams; Materials Science and Engineering: A, 1999, 270, 113-124
  • 14. R. B. Pecherski, M. Nowak, Z. Nowak; Virtual metallic foams. Application for dynamic crushing analysis; International Journal for Multiscale Computational Engineering, 2017, 15(5), 431-442
  • 15. D. Papadopoulos, I. C. Konstantinidis, N. Papanastasiou, S. Skolianos, H. Lefakis, D. Tsipas; Mechanical properties of Al metal foams; Materials letters, 2004, 58, 2574-2578
  • 16. L. Peroni, M. Avalle, M. Peroni; The mechanical behaviour of aluminium foam structures in different loading conditions; International Journal of Impact Engineering, 2008, 35, 644-658
  • 17. L. J. Gibson, M. F. Ashby; Cellular solids: structure and properties: Cambridge University Press, 1999
  • 18. K. P. Dharmasena, H. N. Wadley, Z. Xue, J. W. Hutchinson; Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading; International Journal of Impact Engineering, 2008, 35, 1063-1074
  • 19. X. Li, P. Zhang, Z. Wang, G. Wu, L. Zhao; Dynamic behavior of aluminum honeycomb sandwich panels under air blast: Experiment and numerical analysis; Composite Structures, 2014, 108, 1001-1008
  • 20. H. Rathbun, D. Radford, Z. Xue, M. He, J. Yang, V. Deshpande, et al.; Performance of metallic honeycomb-core sandwich beams under shock loading; International journal of solids and structures, 2006, 43, 1746-1763
  • 21. L. Hu, T. Yu; Dynamic crushing strength of hexagonal honeycombs; International Journal of Impact Engineering, 2010, 37, 467-474
  • 22. D. Okumura, N. Ohno, H. Noguchi; Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression; International Journal of Solids and Structures, 2002, 39, 3487-3503
  • 23. Z. Zou, S. Reid, P. Tan, S. Li, J. Harrigan; Dynamic crushing of honeycombs and features of shock fronts; International Journal of Impact Engineering, 2009, 36, 165-176
  • 24. D. Ruan, G. Lu, B. Wang, T. X. Yu; In-plane dynamic crushing of honeycombs - a finite element study; International Journal of Impact Engineering, 2003, 28, 161-182
  • 25. H. AL-RIFAIE, W. Sumelka; Auxetic Damping Systems for Blast Vulnerable Structures; in Handbook of Damage Mechanics, G. Z. Voyiadjis, Ed., II ed: Springer, 2020, 25
  • 26. S. Xu, J. H. Beynon, D. Ruan, G. Lu; Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs; Composite Structures, 2012, 94, 2326-2336
  • 27. A. A. Nia, M. Sadeghi; The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study; Materials & Design, 2010, 31, 1216-1230
  • 28. P. Zhang, J. Liu, Y. Cheng, H. Hou, C. Wang, Y. Li; Dynamic response of metallic trapezoidal corrugated-core sandwich panels subjected to air blast loading-An experimental study; Materials & Design (1980-2015), 2015, 65, 221-230
  • 29. C. J. Wiernicki, F. Liem, G. D. Woods, A. J. Furio; Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads; Naval Engineers Journal, 1991, 103, 192-202
  • 30. R. Studziński, T. Gajewski, M. Malendowski, W. Sumelka, H. Al-Rifaie, P. Peksa, et al.; Blast test and failure mechanisms of soft-core sandwich panels for storage halls applications; Materials, 2021, 12, 70
  • 31. H. Al-Rifaie, P. Wożniak, T. Łodygowski; Improving the blast resistance of steel columns using trapezoidal sandwich panels; in Science for Defence: Safety for Critical Infrastructure, 1 ed Warsaw: Wydawnictwo Instytutu Technicznego Wojsk Lotniczych, 2022, 33-54
  • 32. H. Al-Rifaie, R. Studziński, T. Gajewski, M. Malendowski, P. Peksa, W. Sumelka, et al.; Full scale field testing of trapezoidal core sandwich panels subjected to adjacent and contact detonations; in Modern Trends in Research on Steel, Aluminium and Composite Structures, ed: Routledge, 2021, 393-399
  • 33. R. Studziński, Z. Pozorski; Experimental and numerical analysis of sandwich panels with hybrid core; Journal of Sandwich Structures & Materials, 2018, 20, 271-286
  • 34. Y. Rong, J. Liu, W. Luo, W. He; Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels; Composites Part B: Engineering, 2018, 152, 324-335
  • 35. H. Al-Rifaie, R. Studziński, T. Gajewski, M. Malendowski, W. Sumelka, P. W. Sielicki; A new blast absorbing sandwich panel with unconnected corrugated layers - numerical study; Energies, 2021, 14(1), 214
  • 36. X. Hou, Z. Deng, K. Zhang; Dynamic Crushing Strength Analysis of Auxetic Honeycombs; Acta Mechanica Solida Sinica, 2016, 29, 490-501
  • 37. G. Imbalzano, S. Linforth, T. D. Ngo, P. V. S. Lee, P. Tran; Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs; Composite Structures, 2018, 183, 242-261
  • 38. H. Al-Rifaie, N. Novak, M. Vesenjak, Z. Ren, W. Sumelka; Fabrication and Mechanical Testing of the Uniaxial Graded Auxetic Damper; Materials, 2022, 15, 387
  • 39. N. Novak, H. Al-Rifaie, A. Airoldi, L. Krstulović-Opara, T. Łodygowski, Z. Ren, et al.; Quasi-static and impact behaviour of foam-filled graded auxetic panel; International Journal of Impact Engineering, 2023, 104606
  • 40. H. Al-Rifaie, W. Sumelka; Improving the Blast Resistance of Large Steel Gates-Numerical Study; Materials, 2020, 13, 2121
  • 41. A. Yeganeh-Haeri, D. J. Weidner, J. B. Parise; Elasticity of or-cristobalitez A silicon dioxide with a negative Poisson’s ratio; Science, 1992, 257, 31
  • 42. X. Y. Zhang, X. Ren, Y. Zhang, Y. M. Xie; A novel auxetic metamaterial with enhanced mechanical properties and tunable auxeticity; Thin-Walled Structures, 2022, 174, 109162
  • 43. M. Zhang, H. Hu, H. Kamrul, S. Zhao, Y. Chang, M. Ho, et al.; Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation; Composites Science and Technology, 2022, 218, 109195
  • 44. H. Al-Rifaie, W. Sumelka; Tłumik jednoosiowy dla układów bezpieczeństwa bram, drzwi lub okien (in Polish); Uniaxial damper as a safety system for gates, doors or windows. Patent, 2021,
  • 45. J. Michalski, T. Strek; Blast resistance of sandwich plate with auxetic anti-tetrachiral core; Vibrations in Physical Systems, 2020, 31, 2020317
  • 46. A. Mrozek, T. Strek; Numerical analysis of dynamic properties of an auxetic structure with rotating squares with holes; Materials, 2022, 15, 8712
  • 47. J. Michalski, T. Strek; Response of a sandwich plate with auxetic anti-tetrachiral core to puncture; In: Advances in Manufacturing III. MANUFACTURING 2022. Lecture Notes in Mechanical Engineering; B. Gapiński, O. Ciszak, V. Ivanov (eds), Springer, Cham, 2022, 1-14.
  • 48. T. Strek, J. Michalski, H. Jopek; Computational analysis of the mechanical impedance of the sandwich beam with auxetic metal foam core; Physica Status Solidi (b), 2019, 256, 1800423
  • 49. A. Alderson; A triumph of lateral thought; Chemistry & Industry, 1999, 17, 384-391
  • 50. W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, M.-B. Yang; Review on auxetic materials; Journal of Materials Science, 2004, 39, 3269-3279
  • 51. G. N. Greaves; Poisson's ratio over two centuries: challenging hypotheses; Notes Rec. R. Soc., 2013, 67, 37-58
  • 52. Y. Liu, H. Hu; A review on auxetic structures and polymeric materials; Scientific Research and Essays, 2010, 5, 1052-1063
  • 53. Y. Prawoto; Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio; Computational Materials Science, 2012, 58, 140-153
  • 54. H. Al-Rifaie, R. Studziński, W. Sumelka; A New Shock Absorbing Sandwich Panel with Unconnected Trapezoidal Corrugated Layers;presented at the Seventh International Symposium On Explosion, Shock Wave And High-strain-rate Phenomena, Maribor, Slovenia, 2023
  • 55. S. E. Rigby, S. D. Fay, A. Tyas, J. A. Warren, S. D. Clarke; Angle of incidence effects on far-field positive and negative phase blast parameters; International Journal of Protective Structures, 2015, 6, 23-42
  • 56. M. Chipley, W. Lyon, R. Smilowitz, P. Williams, C. Arnold, W. Blewett, et al.; Primer to Design Safe School Projects in Case of Terrorist Attacks and School Shootings. Buildings and Infrastructure Protection Series. FEMA-428/BIPS-07/January 2012. Edition 2; US Department of Homeland Security, 2012
  • 57. G. R. Johnson, W. H. Cook; A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures; in Proceedings of the 7th International Symposium on Ballistics, 1983, 541-547
  • 58. G. R. Johnson, W. H. Cook; Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures; Engineering fracture mechanics, 1985, 21, 31-48
  • 59. M. Grazka, J. Janiszewski; Identification of Johnson-Cook Equation Constants using Finite Element Method; Engineering Transactions, 2012, 60, 215-223
  • 60. A. Shrot, M. Bäker; Determination of Johnson-Cook parameters from machining simulations; Computational Materials Science, 2012, 52, 298-304
  • 61. T. Børvik, O. Hopperstad, T. Berstad, M. Langseth; A computational model of viscoplasticity and ductile damage for impact and penetration; European Journal of Mechanics-A/Solids, 2001, 20, 685-712
  • 62. ASM Specification Aerospace Metals. Aluminum 6063-T4; Available: http://asm.matweb.com
  • 63. S. Hou, C. Shu, S. Zhao, T. Liu, X. Han, Q. Li; Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading; Composite Structures, 2015, 126, 371-385
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1abf503b-c898-4c31-a7b5-23cc9f81f4ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.