PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Microwave Sources for EPR Spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rapid development of many scientific and technical disciplines, especially in material science and material engineering increases a demand for quick, accurate and cheap techniques of materials investigations. The EPR spectroscopy meets these requirements and it is used in many fields of science including biology, chemistry and physics. For proper work, the EPR spectrometer needs a microwave source, which are reviewed in this paper. Vacuum tubes as well as semiconductor generators are presented such as magnetron, klystron, traveling wave tube, backward wave oscillator, orotron, gyrotron, Gunn and IMPATT diodes. In this paper main advantages of gyrotron usage, such as stability and an increased spectral resolution in application to EPR spectroscopy is discussed. The most promising and reliable microwave source is suggested.
Rocznik
Tom
Strony
18--25
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Terahertz Technology Center, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego st 27, 50-370 Wrocław, Poland
autor
  • Terahertz Technology Center, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego st 27, 50-370 Wrocław, Poland
  • Terahertz Technology Center, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego st 27, 50-370 Wrocław, Poland
autor
  • Terahertz Technology Center, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego st 27, 50-370 Wrocław, Poland
  • Terahertz Technology Center, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego st 27, 50-370 Wrocław, Poland
  • Terahertz Technology Center, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego st 27, 50-370 Wrocław, Poland
  • Terahertz Technology Center, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego st 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] V. I. Krinichnyi, 2-mm Wave Band EPR Spectroscopy of Condensed Systems. Taylor & Francis, 1994.
  • [2] K. M¨obius and A. Savitsky, High-Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States. RSC Publishing, 2008 (doi: 10.1039/9781847559272).
  • [3] W. Willshaw, L. Rushforth, A. Stainsby, R. Latham, A. Balls, and A. King, “The high-power pulsed magnetron: development and design for radar applications”, J. of the Institution of Elec. Engin. – Part IIIA: Radiolocation, vol. 93, no. 5, pp. 985–1005, 1946 (doi: 10.1049/ji-3a-1.1946.0188).
  • [4] M. Neubauer, R. Johnson, A. Moretti, and M. Popovic, “Phase and frequency locked magnetrons for SRF sources”, in Proc. Particle Accelerator Conference PAC09, Vancouver, Canada, 2009 [Online]. Available: http://lss.fnal.gov/archive/2009/conf/fermilab-conf09-202-ad.pdf
  • [5] R. Robertshaw and W. Willshaw, “Some properties of magnetrons using spatial-harmonic operation”, Proceedings of the IEE – Part C: Monographs, vol. 103, no. 4, pp. 297–306, 1956 (doi: 10.1049/pi-c.1956.0041).
  • [6] S. Sosnytskiy and D. Vavriv, “Theory of the spatialharmonic magnetron: an equivalent network approach”, IEEE Trans. on Plasma Sci., vol. 30, no. 3, pp. 984–991, 2002 (doi: 10.1109/TPS.2002.801616).
  • [7] J.-I. Kim, S.-G. Jeon, G.-J. Kim, J. Kim, V. D. Yeryomka, A. S. Tishchenko, and V. D. Naumenko, “Numerical and experimental investigation of a 35 GHz 20-vane spatial-harmonic magnetron”, in Proc. 35th Int. Conf. on Infrared Millimeter and Terahertz Waves IRMMW-THz 2010, Rome, Italy (doi: 10.1109/ICIMW.2010.5613045).
  • [8] N. Avtomonov, V. Naumenko, D. Vavriv, K. Schunemann, A. Suvorov, and V. Markov, “Toward terahertz magnetrons: 210-GHz spatial-harmonic magnetron with cold cathode”, IEEE Trans. on Elec. Dev., vol. 59, no. 12, pp. 3608–3611, 2012 (doi: 10.1109/TED.2012.2217974).
  • [9] N. Avtomonov, V. Naumenko, and D. Vavriv, “Development of terahertz spatial-harmonic magnetrons”, in Proc. Eur. Microw. Conf. EuMC 2013, Nuremberg, Germany, 2013, pp. 187–190.
  • [10] “Spatial-harmonic magnetrons with cold secondary emission cathode” [Online]. Available: http://radar.kharkov.com/index.php?s= 3&p=7 (accessed Jan. 1, 2016).
  • [11] J. Gunn, “Microwave oscillations of current in III–V semiconductors”, Solid State Commun., vol. 1, no. 4, pp. 88–91, 1963 (doi: doi.org/10.1016/0038-1098(63)90041-3) [Online]. Available: http://www.sciencedirect.com/science/article/pii/0038109863900413
  • [12] Z. Gribnikov, R. Bashirov, and V. Mitin, “Negative effective mass mechanism of negative differential drift velocity and terahertz generation”, IEEE J. of Selec. Topics in Quantum Electron., vol. 7, no. 4, pp. 630–640, 2001, (doi: 10.1109/2944.974235).
  • [13] J. Carlstrom, R. Plambeck, and D. Thornton, “A continuously tunable 65 – 15-GHz Gunn oscillator”, IEEE Trans. on Microw. Theory and Techni., vol. 33, no. 7, pp. 610–619, 1985 (doi: 10.1109/TMTT.1985.1133036).
  • [14] M. Hornstein, R. Griffin, J. Machuzak, M. Shapiro, R. Temkin, and K. Kreischer, “A 460 GHz gyrotron oscillator for use in DNP/NMR spectroscopy”, in IEEE Conference Record – Abstracts Pulsed Power Plasma Science, 2001, Las Vegas, NV, USA, 2001, p. 516 (doi: 10.1109/PPPS.2001.961319).
  • [15] R. Stringall and J. Lebacqz, “High-power klystron development at the Stanford Linear Accelerator Center”, in Int. Electron Devices Meeting 1970, Washington D.C., 1970, vol. 16, p. 128 (doi: 10.1109/IEDM.1970.188317).
  • [16] G. Caryotakis, “High power klystrons: Theory and practice at the Stanford Linear Accelerator Center. Part 1. Theory and design”, SLAC-PUB 10620, United States Department of Energy Office of Science, 2004.
  • [17] H. A. Buckmaster and J. C. Dering, “A 9-GHz, single klystron, EPR spectrometer using superheterodyne demodulation”, Canadian J. of Phys., vol. 45, no. 1, pp. 107–117, 1967 (doi: 10.1139/p67-012).
  • [18] “Microwave Processing of Materials”, National Materials Advisory Board Commission on Engineering and Technical Systems, National Research Council (doi: 10.17226/2266).
  • [19] A. Roitman, R. Dobbs, D. Berry, M. Hyttinen, P. Horoyski, and B. Steer, “Advantages of the extended interaction klystron technology at millimeter and submillimeter frequencies”, in IEEE 34th Int. Conf. on Plasma Sci. ICOPS 2007, Albuquerque, NM, USA, 2007 (doi: 10.1109/PPPS.2007.4345972).
  • [20] R. Dobbs et al., “Fabrication and test of terahertz extended interaction klystrons”, in Proc. 36th Int. Conf. on Infrared Millimeter and Terahertz Waves IRMMW-THz 2011, Houston, TX, USA, 2011 (doi: 10.1109/irmmw-THz.2011.6105058).
  • [21] R. Kompfner, “The invention of traveling wave tubes”, IEEE Trans. on Electron Dev., vol. 23, no. 7, pp. 730–738, 1976 (doi: 10.1109/T-ED.1976.18477).
  • [22] S. Fernandez-Gutierrez, D. Gautreau, J. Sirigiri, B. Popovic, D. Gamzina, and N. Luhmann, “263 GHz traveling wave tube (TWT) amplifier for dynamic nuclear polarization (DNP) and electron paramagnetic resonance (EPR) spectroscopy”, in Proc. 40th Int. Conf. on Infrared Millimeter and Terahertz Waves IRMMW-THz 2015, Hong Kong (doi: 10.1109/IRMMW-THz.2015.7327797).
  • [23] B. Epsztein, “Backward flow travelling wave devices”, US Patent 2,932,760, Apr. 1960 [Online]. Available: http://www.google.com/patents/US2932760
  • [24] J. Telser et al., “High-frequency/high-field EPR spectroscopy of the high-spin ferrous ion in hexaaqua complexes”, Magnetic Resonance in Chemistry, vol. 43, no. S1, pp. S130–S139, 2005 (doi: 10.1002/mrc.1689).
  • [25] A. Konovalov and V. Tarasov, “Millimeter and submillimeter EPR spectroscopy”, Radiophys. and Quant. Electron., vol. 50, no. 10-11, pp. 813–822, 2007 (doi: 10.1007/s11141-007-0072-2).
  • [26] J. Krzystek, S. Zvyagin, A. Ozarowski, S. Trofimenko, and J. Telser, “Tunable-frequency high-field electron paramagnetic resonance”, J. of Magnetic Resonance, vol. 178, no. 2, pp. 174–183, 2006 (doi: 10.1016/j.jmr.2005.09.007) [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S1090780705003095
  • [27] F. Rusin and G. Bogomolov, “Orotron – an electronic oscillator with an open resonator and reflecting grating”, Proceedings of the IEEE, vol. 57, no. 4, pp. 720–722, 1969 (doi: 10.1109/PROC.1969.7049).
  • [28] A. Fedotov, V. Bratman, B. Dumesh, P. Makhalov, and F. Rusin, “Orotron oscillators and frequency multipliers as sources of coherent terahertz radiation”, in Proc. Int. Worksh. Terahertz and Mid Infrared Radiation: Basic Res. and Pract. Appl. TERA-MIR 2009, Turunc¸Marmaris, Turkey, 2009, pp. 19–20 (doi: 10.1109/TERAMIR.2009.5379648).
  • [29] V. Bratman, B. Dumesh, A. Fedotov, P. Makhalov, B. Movshevich, and F. Rusin, “Terahertz orotrons and oromultipliers”, IEEE Trans. on Plasma Sci., vol. 38, no. 6, pp. 1466–1471, 2010 (doi: 10.1109/TPS.2010.2041367).
  • [30] G. S. Nusinovich, “Analytical nonlinear theory of the orotron”, Phys. of Plasmas, vol. 13, no. 5, 2006 (doi: 10.1063/1.2200631).
  • [31] W. Shockley, “Negative resistance arising from transit time in semiconductor diodes”, Bell System Tech. J., vol. 33, no. 4, pp. 799–826, 1954.
  • [32] W. Read, “A proposed high-frequency, negative resistance diode”, Bell System Tech. J., vol. 37, no. 2, pp. 401–446, 1958.
  • [33] W. C. Niehaus, T. E. Seidel, and D. E. Iglesias, “Double-drift impatt diodes near 100 GHz”, IEEE Trans. on Elec. Dev., vol. 20, no. 9, pp. 765–771, 1973.
  • [34] T. Ishibashi, M. Ino, T. Makimura, and M. Ohmori, “Liquidnitrogen-cooled submillimetre-wave silicon IMPATT diodes”, Electron. Lett., vol. 13, no. 10, pp. 299–300, 1977.
  • [35] E. J. Reijerse, “High-frequency EPR instrumentation”, Appl. Magnet. Resonance, vol. 37, no. 1, pp. 795–818, 2009, (doi: 10.1007/s00723009-0070-y).
  • [36] R. D. Hogg, “Applications of IMPATT diodes as RF sources for microwave EPR spectroscopy”, Rev. of Scien. Instruments, vol. 44, no. 5, 1973.
  • [37] T. Idehara et al., “Continuously frequency tunable high power subTHz radiation source-gyrotron FU CW VI for 600 MHz DNP-NMR spectroscopy”, J. of Infrared, Millimeter, and Terahertz Wav., vol. 31, no. 7, pp. 775–790, 2010 (doi: 10.1007/s10762-010-9643-y).
  • [38] V. Denysenkov, M. J. Prandolini, M. Gafurov, D. Sezer, B. Endeward, and T. F. Prisner, “Liquid state DNP using a 260 GHz high power gyrotron”, Phys. Chem. Chem. Phys., vol. 12, no. 22, pp. 5786–5790, 2010 (doi: 10.1039/C003697H).
  • [39] V. Flyagin, A. Gaponov, M. Petelin, and V. Yulpatov, “The gyrotron”, IEEE Trans. on Microw. Theory and Techniq., vol. 25, no. 6, pp. 514–521, 1977 (doi: 10.1109/TMTT.1977.1129149).
  • [40] G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, “Range, resolution and power of THz systems for remote detection of concealed radioactive materials”, J. of Appl. Phys., vol. 109, no. 8, 083303, 2011 (doi: 10.1063/1.3572062).
  • [41] V. Bajaj et al., “Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source”, J. of Magnet. Resonance, vol. 213, no. 2, pp. 404–409, 2011 (doi: 10.1016/j.jmr.2011.09.010) [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S1090780711003223
  • [42] T. Fujiwara, Y. Matsuki, and M. Toda, “Application of high-frequency gyrotrons to high-field DNP-NMR spectroscopy”, in Proc. 5th Int. Worksh. on Far-Infrared Technol. IW-FIRT 2014, Fukui, Japan, 2014.
  • [43] S. Mitsudo and Y. Fujii, “Intense and short millimeter wave pulse generation by using a gyrotron as a light source”, in Proc. 5th Int. Worksh. on Far-Infrared Technol. IW-FIRT 2014, Fukui, Japan, 2014.
  • [44] M. Hruszowiec, W. Czarczyński, E. F. Pliński, and T. Więckowski, “Gyrotron technology”, J. of Telecommun. and Inform. Technol., no. 1, pp. 68–76, 2014.
  • [45] A. Torrezan et al., “Continuous-wave operation of a frequencytunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance”, IEEE Trans. on Plasma Sci., vol. 38, no. 6, pp. 1150–1159, 2010 (doi: 10.1109/TPS.2010.2046617).
  • [46] T. Tatsukawa, T. Maeda, H. Sasai, T. Idehara, M. Mekata, T. Saito, and T. Kanemaki, “ESR spectrometer with a wide frequency range using a gyrotron as a radiation power source”, Int. J. of Infrared and Millimeter Wav., vol. 16, no. 1, pp. 293–305, 1995 (doi: 10.1007/BF02085864).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1abb906c-022b-4410-b72e-12a52a2b8ac7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.