PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Hybrid Energy Storage System with Reconfigurability and Fast Equalisation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the rapid growth of electric vehicles (EVs) in recent years, the research on their energy storage systems (ESSs) has also shown great popularity. A traditional ESS normally has a fixed configuration and uses a single type of energy storage unit. However, this traditional design has some limitations, such as low flexibility and high requirements to unit consistency. To solve these problems, a new hybrid energy storage system is proposed in this paper. The proposed ESS hybridises multiple lithium-ion battery modules and one supercapacitor module. By controlling the states of switches inside the ESS topology, module level reconfiguration can be achieved. Further, a DC/DC converter is also included in the ESS topology, which is connected to the supercapacitor module and can be used to ensure correct ESS output voltage. Reconfiguration and active balancing algorithms are also given based on the proposed ESS topology. Situations with and without bypassing the lithium-ion battery modules are both discussed in the algorithms. The proposed hybrid ESS is finally verified with simulations. The system model is built in the Simulink/MATLAB environment. Simulation results show that the lithium-ion modules with a lower state of charge values have higher priorities to be connected in parallel. Reconfiguration actions are able to balance all lithium-ion battery modules within one Worldwide Harmonised Light-Duty Vehicle Test Cycle (WLTC) simulation cycle while maintaining ESS output voltage within a correct range. Furthermore, the proposed hybrid ESS control algorithms remain valid when one lithium-ion battery module is manually bypassed during simulation.
Wydawca
Rocznik
Strony
68--83
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Electrical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
autor
  • Department of Electrical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
Bibliografia
  • Biľanský, J. and Lacko, M. (2020). Design and Simulation of Cyclic Battery Tester. Power Electronics and Drives, 5(40), pp. 229–241, doi: 10.2478/pead-2020-0017.
  • Burke, A., Liu, Z. and Zhao, H. (2014). Present and Future Applications of Supercapacitors in Electric and Hybrid Vehicles. 2014 IEEE International Electric Vehicle Conference (IEVC), pp. 1–8, doi: 10.1109/IEVC.2014.7056094.
  • Caspar, M., Eiler, T. and Hohmann, S. (2018). Systematic Comparison of Active Balancing: A Model-Based Quantitative Analysis. In IEEE Transactions on Vehicular Technology, 67(2), pp. 920–934, doi: 10.1109/TVT.2016.2633499.
  • Chen, H., Xiong, R., Lin, C. and Shen, W. (2021). Model Predictive Control Based Real-Time Energy Management for Hybrid Energy Storage System. In CSEE Journal of Power and Energy Systems, 7(4), pp. 862–874, doi: 10.17775/CSEEJPES.2020.02180.
  • Ci, S., Lin, N. and Wu, D. (2016). Reconfigurable Battery Techniques and Systems: A Survey. In IEEE Access, 4, pp. 1175–1189, doi: 10.1109/ACCESS.2016.2545338.
  • East, S. and Cannon, M. (2020). Optimal Power Allocation in Battery/Supercapacitor Electric Vehicles Using Convex Optimization. In IEEE Transactions on Vehicular Technology, 69(11), pp. 12751–12762, doi: 10.1109/TVT.2020.3023186.
  • Frieske, B., Kloetzke, M. and Mauser, F. (2013). Trends in Vehicle Concept and Key Technology Development for Hybrid and Battery Electric Vehicles. 2013 World Electric Vehicle Symposium and Exhibition (EVS27), pp. 1–12, doi: 10.1109/EVS.2013.6914783.
  • Gunlu, G. (2017). Dynamically Reconfigurable Independent Cellular Switching Circuits for Managing Battery Modules. In IEEE Transactions on Energy Conversion, 32(1), pp. 194–201, doi: 10.1109/TEC.2016.2616190.
  • Han, W. and Kersten, A. (2020). Analysis and Estimation of the Maximum Circulating Current during the Parallel Operation of Reconfigurable Battery Systems. 2020 IEEE Transportation Electrification Conference & Expo (ITEC), pp. 229–234, doi: 10.1109/ITEC48692.2020.9161478.
  • Huang, W. and Abu Qahouq, J. A. (2015). Energy Sharing Control Scheme for State-of-Charge Balancing of Distributed Battery Energy Storage System. In IEEE Transactions on Industrial Electronics, 62(5), pp. 2764–2776, doi: 10.1109/TIE.2014.2363817.
  • Huang, X., Jiang, B. and Liu, Y. (2021). A Reconfigurable Battery Supercapacitor Hybrid Energy System with Active Balancing for Vehicle Applications. 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), pp. 231–236, doi: 10.1109/PEMC48073.2021.9432499.
  • Jiang, B., Liu, Y., Huang, X. and Prakash, R. R. R. (2020). A New Battery Active Balancing Method with Supercapacitor Considering Regeneration Process. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, pp. 2364–2369, doi: 10.1109/IECON43393.2020.9254839.
  • Khaligh, A. and Li, Z. (2010). Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. In IEEE Transactions on Vehicular Technology, 59(6), pp. 2806–2814, doi: 10.1109/TVT.2010.2047877.
  • Kim, H. and Shin, K. G. (2009). On Dynamic Reconfiguration of a Large-Scale Battery System. 2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 87–96, doi: 10.1109/RTAS.2009.13.
  • Kim, T., Qiao, W. and Qu, L. (2012). Power Electronics-Enabled Self-X Multicell Batteries: A Design Toward Smart Batteries. In IEEE Transactions on Power Electronics, 27(11), pp. 4723–4733, doi: 10.1109/TPEL.2012.2183618.
  • Kollmeyer, P., Wootton, M., Reimers, J., Stiene, T., Chemali, E., Wood, M. and Emadi, A. (2017). Optimal Performance of a Full Scale Li-ion Battery and Li-ion Capacitor Hybrid Energy Storage System for a Plug-in Hybrid Vehicle. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 572–577, doi: 10.1109/ECCE.2017.8095834.
  • Kremzow-Tennie, S., Scholz, T., Friedbert, P., Alexander, P., Heiko, F. and Benedikt, S. (2022). A Comprehensive Overview of the Impacting Factors on a Lithium-Ion-Battery’s Overall Efficiency. Power Electronics and Drives. 7(42), pp. 9-28, doi: 10.2478/pead-2022-0002
  • Lee, S., Noh, G. and Ha, J. I. (2021). Efficient and Reconfigurable Multi-cell Battery Pack for Portable Electronic Devices with Simultaneous Charging and Discharging Capability. 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia), pp. 1021–1026, doi: 10.1109/ECCE-Asia49820.2021.9479094.
  • Momayyezan, M., Hredzak, B. and Agelidis, V. G. (2016). Integrated Reconfigurable Converter Topology for High-Voltage Battery Systems. In IEEE Transactions on Power Electronics, 31(3), pp. 1968–1979, doi: 10.1109/TPEL.2015.2440441.
  • Morstyn, T., Momayyezan, M., Hredzak, B. and Agelidis, V. G. (2016). Distributed Control for State-of-Charge Balancing Between the Modules of a Reconfigurable Battery Energy Storage System. In IEEE Transactions on Power Electronics, 31(11), pp. 7986–7995, doi: 10.1109/TPEL.2015.2513777.
  • Muhammad, S., Rafique, M. U., Li, S., Shao, Z., Wang, Q. and Liu, X. (2019). Reconfigurable Battery Systems: A Survey on Hardware Architecture and Research Challenges. ACM Transactions on Design Automation of Electronic Systems, 24, pp. 1–27, doi: 10.1145/3301301.
  • Omariba, Z. B., Zhang, L. and Sun, D. (2019). Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles. In IEEE Access, 7, pp. 129335–129352, doi: 10.1109/ACCESS.2019.2940090.
  • Peprah, G. K., Liberati, F., Altaf, F., Osei-Dadzie, G., Di Giorgio, A. and Pietrabissa, A. (2021). Optimal Load Sharing in Reconfigurable Battery Systems using an Improved Model Predictive Control Method. 2021 29th Mediterranean Conference on Control and Automation (MED), pp. 979–984, doi: 10.1109/MED51440.2021.9480237.
  • Pinter, Z. M., Papageorgiou, D., Rohde, G., Marinelli, M. and Træholt, C. (2021). Review of Control Algorithms for Reconfigurable Battery Systems with an Industrial Example. 2021 56th International Universities Power Engineering Conference (UPEC), pp. 1–6, doi: 10.1109/UPEC50034.2021.9548259.
  • Piriienko, S., Beshta, A., Balakhontsev, A., Khudoliy, S. and Albu, A. (2016). Optimization of Hybrid Energy Storage System for Electric Vehicles. Power Electronics and Drives, 1(36)(2), pp. 97–111, doi:10.5277/PED160206.
  • Salari, O., Zaad, K. H., Bakhshai, A. and Jain, P. (2020). Reconfigurable Hybrid Energy Storage System for an Electric Vehicle DC–AC Inverter. In IEEE Transactions on Power Electronics, 35(12), pp. 12846–12860, doi: 10.1109/TPEL.2020.2993783.
  • Schmid, M., Gebauer, E. and Endisch, C. (2021). Structural Analysis in Reconfigurable Battery Systems for Active Fault Diagnosis. In IEEE Transactions on Power Electronics, 36(8), pp. 8672–8684, doi: 10.1109/TPEL.2021.3049573.
  • Viswanathan, V., Palaniswamy, L. N. and Leelavinodhan, P. B. (2019). Optimization Techniques of Battery Packs Using Reconfigurability: A Review. Journal of Energy Storage, 23, pp. 404–415, doi: 10.1016/j.est.2019.03.002.
  • Xia, Z. and Abu Qahouq, J. A. (2021). State-of-Charge Balancing of Lithium-Ion Batteries With State-of-Health Awareness Capability. In IEEE Transactions on Industry Applications, 57(1), pp. 673–684, doi: 10.1109/TIA.2020.3029755.
  • Ye, Y., Cheng, K. W. E., Fong, Y. C., Xue, X. and Lin, J. (2017). Topology, Modeling, and Design of Switched-Capacitor-Based Cell Balancing Systems and Their Balancing Exploration. In IEEE Transactions on Power Electronics, 32(6), pp. 4444–4454, doi: 10.1109/TPEL.2016.2584925.
  • Zhou, S., Chen, Z., Huang, D. and Lin, T. (2021). Model Prediction and Rule Based Energy Management Strategy for a Plug-in Hybrid Electric Vehicle With Hybrid Energy Storage System. In IEEE Transactions on Power Electronics, 36(5), pp. 5926–5940, doi: 10.1109/TPEL.2020.3028154.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1abab8cd-ed33-4bd4-be7b-e5008cafef41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.