PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Protein, Amino Acid and Carbohydrate Content of Fungal Treated Annual and Perennial Wheat Straw

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of wheat straw as a cellulose containing raw material for the production of sugars and other biologically valuable products can solve the problem of food products shortages, by supplying oligosaccharides, xylose and other valuable metabolites of microbial synthesis. In our experiment, straw of annual spring wheat of the Tulkibas variety and perennial wheat of the Sova variety was added to the enzyme solutions of Trichoderma harzianum 121 and Aspergillus awamori F-RKM 0719 strains. As a result, the variant A. awamori F-RKM 0719 + Sova straw showed the highest level of nitrogen (1.05%) and protein (6.5%). The highest concentration of amino acids, 7.14 mg/ml, was found in the perennial wheat sample, while the lowest concentration, 1.32 mg/ml, in the annual wheat sample. The total carbohydrate content in the straw of the annual and perennial wheat varieties differed, namely, the perennial wheat straw with the addition of A. awamori F-RKM 0719, contained fructose in the amount of 0.0079 mg/g, while in the annual wheat it was absent. The glucose content in the perennial wheat straw was three times higher than in the annual wheat straw, 0.0144 and 0.0035 mg/g, respectively. Based on our results, we recommend wheat straw for the use as a raw material for chemical and microbiological processing.
Słowa kluczowe
Rocznik
Strony
235–--246
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Biodiversitty and Bioresources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050038, Al-Farabi Ave., 71, Almaty, Kazakhstan
  • Department of Life Safety and Environmental Protection, Faculty of Architecture, Construction and Transport, Mukhtar Auezov South Kazakhstan University, 160012, Tauke khan Ave., 5, Shymkent, Kazakhstan
  • Department of Biodiversitty and Bioresources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050038, Al-Farabi Ave., 71, Almaty, Kazakhstan
  • Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, 050038, Al-Farabi Ave., 71, Almaty, Kazakhstan
  • Department of Biodiversitty and Bioresources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050038, Al-Farabi Ave., 71, Almaty, Kazakhstan
  • Department of Biodiversitty and Bioresources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050038, Al-Farabi Ave., 71, Almaty, Kazakhstan
  • Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, 050038, Al-Farabi Ave., 71, Almaty, Kazakhstan
Bibliografia
  • 1. Ahmad M., Taylor C.R., Pink D., Burton K., Eastwood D., Bending G.D., Bugg T.D. 2010. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Molecular Biosystems, 6(5), 815–821. https://doi.org/10.1039/B908966G
  • 2. Bhardwaj N., Kumar B., Agrawal K., Verma P. 2021. Current perspective on production and applications of microbial cellulases: A review. Bioresources and Bioprocessing, 8, 1–34. https://doi.org/10.1186/s40643-021-00447-6
  • 3. Cassman K.G. and Connor D.J. 2022. Progress towards perennial grains for prairies and plains. Outlook on Agriculture, 51(1), 32–38. https://doi.org/10.1177/00307270211073153
  • 4. Chanda M. 2021. Chemical aspects of polymer recycling. Advanced Industrial and Engineering Polymer Research, 4(3), 133–150. https://doi.org/10.1016/j.aiepr.2021.06.002
  • 5. Sushkova V.I., Vorobyeva V.I. 2007. Wasteless conversion of plant raw materials into biologically active substances. Kirov-2007.-204 p. [Rus]
  • 6. Ghaffar S.H., Fan M. 2015. Differential behaviour of nodes and internodes of wheat straw with various pretreatments. Biomass and Bioenergy, 83, 373–382. https://doi.org/10.1016/j.biombioe.2015.10.020
  • 7. Ghaffar S.H., Fan M., Zhou Y., Abo Madyan O. 2017. Detailed analysis of wheat straw node and internode for their prospective efficient utilization. Journal of agricultural and food chemistry, 65(41), 9069–9077. https://doi.org/10.1021/acs.jafc.7b03304
  • 8. Hu X., Ma J., Qian W., Cao Y., Zhang Y., Liu B., Liu L. 2022. Effects of low temperature on the amino acid composition of wheat grains. Agronomy, 12(5), 1171. https://doi.org/10.3390/agronomy12051171
  • 9. Jiang X., Geng A., He N., Li Q. 2011. Jiang, X., Geng, A., He, N., & Li, Q. 2011. New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. Journal of bioscience and bioengineering, 111(2), 121–127. https://doi.org/10.1016/j.jbiosc.2010.09.004
  • 10. Karatayev M., Clarke M., Salnikov V., Bekseitova R., Nizamova M. 2022. Monitoring climate change, drought conditions and wheat production in Eurasia: the case study of Kazakhstan. Heliyon, 8(1). https://doi.org/10.1016/j.heliyon.2021.e08660
  • 11. Liu D., Tang W., Yin J.Y., Nie S.P., Xie M.Y. 2021. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocolloids, 116, #106641. https://doi.org/10.1016/j.foodhyd.2021.106641
  • 12. Luković K., Prodanović S., Perisić V., Milovanović M., Rajicić V., Zečević V. 2020. Multivariate analysis of morphological traits and the most important productive traits of wheat in extreme wet conditions. Applied Ecology and Environmental Research, 18(4), 5857–5871. http://dx.doi.org/10.15666/aeer/1804_58575871
  • 13. Ma J., Li X.L., Xu H., Han Y., Cai Z.C., Yagi K. 2007. Effects of nitrogen fertiliser and wheat straw application on CH4 and N2O emissions from a paddy rice field. Soil Research, 45(5), 359–367. https://doi.org/10.1071/SR07039
  • 14. Makhatov Zh.B., Kedelbaev B.Sh., Lakhanova К.М., Aimenova Zh.E., Adilkhanov S.I. 2017. Prospects of use of enzymatic treatment of wheat straw for glucose production. Industrial Technologies and Engineering (ICITE-2017).
  • 15. Martínez Á.T., Speranza M., Ruiz-Dueñas F.J., Ferreira P., Camarero S., Guillén F., Río Andrade J.C.D. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol, 8, 195–204.
  • 16. Mukherjee A., Wang S.Y.S., Promchote P. 2019. Examination of the climate factors that reduced wheat yield in Northwest India during the 2000s. Water, 11(2), 343–355. https://doi.org/10.3390/w11020343
  • 17. Patel S.J., Onkarappa R., Shobha K.S. 2007. Comparative Studу of Ethanol Production from Microbial Pretreated Agricultural Residues. J.Appl.Sci. Environ.Manage, 11(4), 137–141.
  • 18. Prasanna B.D., Sathyanarayana N., Gummadi and Vadlani Praveen V. 2015. Biotechnology and Biochemical Engineering. Select Proceeding of ICACE: 978-9811019197. http://dx.doi.org/10.1007/978-981-10-1920-3
  • 19. Rathour R.K., Devi M., Dahiya P., Sharma N., Kaushik N., Kumari D., Bhatia R.K. 2023. Recent trends, opportunities and challenges in sustainable management of rice straw waste biomass for green biorefinery. Energies, 16(3), 1429. https://doi.org/10.3390/en16031429
  • 20. Ghaffar S.H. 2019. Wheat straw biorefinery for agricultural waste valorisation. Green Materials, 8, 60–67. https://doi.org/10.1680/jgrma.19.00048
  • 21. Shah S., Venkatramanan V., Prasad R. 2021. Biorefinery: Potential and Prospects for Utilisation of Biogenic Waste. Bio-valorization of Waste: Trends and Perspectives, 315–325. http://dx.doi.org/10.1007/978-981-15-9696-4_14
  • 22. Steven A.C., Trus B.L., Maizel J.V., Unser M., Parry D.A.D., Wall J.S., Studier F.W. 1988. Molecular substructure of a viral receptor-recognition protein: The gp17 tail-fiber of bacteriophage T7. Journal of molecular biology 200(2), 351–365. https://doi.org/10.1016/0022-2836(88)90246-X
  • 23. Wang X., Cai D., Grant C., Hoogmoed W.B., Oenema O. 2015. Factors controlling regional grain yield in China over the last 20 years. Agronomy for sustainable development, 35, 1127–1138. https://doi:10.1007/s13593-015-0288-z
  • 24. Winter G., Todd C.D., Trovato M., Forlani G., Funck D. 2015. Physiological implications of arginine metabolism in plants. Frontiers in plant science, 6, 534. https://doi.org/10.3389/fpls.2015.00534
  • 25. Azipov N.N., Kamalov B.V., Zakirov I.R. 2012. Preparation of feed for feeding. Agrarian theme,1, 66–69. [Rus]
  • 26. Xue C., Matros A., Mock H.P., Mühling K.H. 2019. Protein composition and baking quality of wheat flour as affected by split nitrogen application. Frontiers in plant science, 10, 642. https://doi.org/10.3389/fpls.2019.00642
  • 27. Zając T., Synowiec A., Oleksy A., Macuda J., Klimek-Kopyra A., Borowiec F. 2017. Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height. International Agrophysics, 31(2), 273–285. https://doi.org/10.1515/intag-2016-0041
  • 28. Zörb C., Ludewig U., Hawkesford M.J. 2018. Perspective on wheat yield and quality with reduced nitrogen supply. Trends in plant science, 23(11), 1029–1037. https://doi.org/10.1016/j.tplants.2018.08.012
  • 29. Schierhorn F., Müller D., Prishchepov A., Faramarzi M., Balmann A. 2014. Schierhorn, F., Müller, D., Prishchepov, A. V., Faramarzi, M., & Balmann, A. 2014. The potential of Russia to increase its wheat production through cropland expansion and intensification. Global food security, 3(3–4), 133–141. https://doi.org/10.1016/j.gfs.2014.10.007
  • 30. Blieva P.K., Sadanov A.K., Shormanova Sh.Sh. 2015. The leading role of macerating enzymes in the utilization of agricultural waste. Reports of the National Academy of Sciences of the Republic of Kazakhstan, 5, 106–113. [Rus]
  • 31. Boltovsky V.S. 2014. Hydrolytic processing of polysaccharide components of plant biomass: problems and prospects. Proceedings of the National Academy of Sciences of Belarus. Chemical Sciences Series, 1, 118–123. [Rus]
  • 32. Korobko V.V., Khakalova D.A. 2007. Features of the organization of the shoot node of soft spring wheat. Bulletin of the Botanical Garden of Saratov State University, 6, 138–141. [Rus]
  • 33. Marchenko D.M., Kostylev P.I., Grichanikova T.A. 2013. Correlation analysis in winter wheat breeding (review). Grain Farming of Russia, 3, 28–32. [Rus]
  • 34. Wang X., Wang Q., Zhang Y., Zhang J., Xia S., Qin H., Bie S. 2023. Influence of decomposition agent application and schedule in wheat straw return practice on soil quality and crop yield. Chemical and Biological Technologies in Agriculture, 10(1), 1-12.
  • 35. Zhapayev R., Toderich K., Kunypiyaeva G., Kurmanbayeva M., Mustafayev M., Ospanbayev Z., Kusmangazinov A. 2023. Screening of sweet and grain sorghum genotypes for green biomass production in different regions of Kazakhstan. Journal of Water and Land Development. https://doi.org/10.24425/jwld.2023.143752
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1aba1ab7-a530-45ee-8ec1-087d1ba8eb78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.