PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Searching of Phenol-Degrading Bacteria in Raw Wastewater from Underground Coal Gasification Process as Suitable Candidates in Bioaugmentation Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the conducted study was to isolate, identify and characterize suitable bacterial strains from UCG wastewater as potential candidates for the bioaugmentation approach. For this purpose, the straightforward cultivation procedure and unique biochemical selection were employed to gain insights into the specific properties of bacteria. From the 100 strains isolated from UCG wastewater, three (Paenibacillus pasadensis SAFN-007, Peanibacillus humicus Au34, and Staphylococcus warneri DK131) demonstrated the capacity to degrade phenol and specific biochemical properties. Phenol degradation reached more than 90% for the above-mentioned strains, while the average phenol removal rate for other selected strains was 82.9%, ranging from 66.1% to 90%. The bacterial strains belong to multi-enzyme producers and constitute a possible source of potential technologically important enzymes. Phenotypic microarray plates were used to characterise the metabolic properties of the strains. It was found that 74%, 67.4% and 94.2% of the carbon metabolites tested were utilised by Paenibacillus pasadensis SAFN-007, Peanibacillus humicus Au34 and Staphylococcus warneri DK131, respectively. Among C sources, the strains have the capability to metabolize some substrates appearing in phenol pathways, such as: N-acetyl-D-glucosamine, succinic acid, α-hydroxy-glutaric acid-γ-lactone, bromosuccinic acid, mono-methyl succinate, methyl-pyruvate, p-hydroxy-phenyl acetic acid, m-hydroxyphenylacetic acid, L-galactonic acid-γ-lactone, D-galactonic acid-γ- lactone, phenylethylamine. Bacteria show different levels of tolerance to pH and osmolality, and they can thrive in different habitats. Another characteristic of these strains is their high resistance to many antibiotics (multi-resistant bacteria). These properties allow the use of the isolated bacterial strains as good candidates for bioremediation of phenol-contaminated environments. The wastewater from the underground coal gasification process is an example of a good extreme environment for the isolation of unique bacteria with specific metabolic properties.
Rocznik
Strony
62--71
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, ul. Stanisława Kossutha 6, 40-844 Katowice, Poland
  • Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, ul. Stanisława Kossutha 6, 40-844 Katowice, Poland
  • Department of Energy Saving and Air Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
  • Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
  • Faculty of Organization and Management, Silesian Technical University, 41-800 Zabrze, Poland
Bibliografia
  • 1. Adams G.O., Fufeyin P.T., Okoro S.E., Ehinomen I. 2015. Bioremediation, biostimulation and bioaugmention: a review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28–39.
  • 2. Alshabib M., Onaizi S.A. 2019. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges. Separation and Purification Technology, 219, 186–207.
  • 3. Anku W.W., Mamo M., Govender P. 2017. In: Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods, pp. 420–443.
  • 4. Bhandari S., Poudel D.K., Marahatha R., Dawadi S., Khadayat K., Phuyal S., Shrestha S., Gaire S., Basnet K., Khadka U., Parajuli N. 2021. Microbial enzymes used in bioremediation. Journal of Chemistry, 8849512, 1–17.
  • 5. Bibi A., Bibi S., Abu-Dieyeh M., Al-Ghouti A.A. 2023. Towards sustainable physiochemical and biological techniques for the remediation of phenol from wastewater: A review on current applications and removal mechanisms. Journal of Cleaner Production, 417, 137810.
  • 6. Blumenstein K., Macaya-Sanz D., Martín J.A., Albrectsen B.R., & Witzell J. 2015. Phenotype Micro-Arrays as a complementary tool to next generation sequencing for characterization of tree endophytes. Frontiers in microbiology, 6, 1033.
  • 7. Borgulat J., Ponikiewska K., Jałowiecki Ł., Strugała-Wilczek A., Płaza G. 2022. Are wetlands as an integrated bioremediation system applicable for the treatment of wastewater from underground coal gasification processes?. Energies, 15(12), 4419.
  • 8. Cabrera M.A., Blamey J.M. 2018. Biotechnological applications of archaeal enzymes from extreme environments. Biological research, 51, 37.
  • 9. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Gascuel O. 2008. Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36 (suppl. 2), 465–469.
  • 10. Dunkley E.J., Chalmers J.D., Cho S., Finn T.J., Patrick W.M. 2019. Assessment of Phenotype Microarray plates for rapid and high-throughput analysis of collateral sensitivity networks. PloS ONE 14(12), e0219879.
  • 11. Filipowicz N., Cieślinski H. 2020. A rapid and simple method for screening microorganisms with a potential for catechol biodegradation. International Journal of Environmental Research, 14, 87–92.
  • 12. Grade E.N., macDonald J., Liu L., Richman A., Yuan Z.Ch. 2016. Current knowledge and perspectives of Paenibacillus: a review. Microbial cell factories, 15, 203.
  • 13. Greetham D. 2014. Phenotype microarray technology and its application in industrial biotechnology. Biotechnology letters, 36, 1153–1160.
  • 14. Herrero M., Stuckey D.C. 2015. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, 119–128.
  • 15. Jałowiecki Ł., Chojniak J., Dorgeloh E., Hegedusova B., Ejhed H., Magnér J., Płaza G. 2017b. Using phenotype microarrays in the assessment of the antibiotic susceptibility profile of bacteria isolated from wastewater in on-site treatment facilities. Folia microbiologica, 62, 453–461.
  • 16. Jałowiecki Ł., Chojniak J., Płaza G., Dorgeloh E., Hegedusova B., Ejhed H. 2017a. Bacteria from on-site wastewater treatment facilities as enzymes producers for applications in environmental technologies In: “Environmental Engineering V”. Pawłowska M. and Pawłowski L. (eds.) 1st Edition, CRC Press, pp. 115–122
  • 17. Jałowiecki Ł., Krzymińska I., Górska M., Płaza G., Ratman-Kłosińska, I. (2020). Effect of the freezedrying process on the phenotypic diversity of Pseudomonas putida strains isolated from the interior of healthy roots of Sida hermaphrodita: Phenotype microarrays (PMs). Cryobiology, 96, 145-151.
  • 18. Kapusta K., Stańczyk K. 2011. Pollution of water during underground coal gasification of hard coal and lignite. Fuel, 90, 1927–1934.
  • 19. Li A.X., Guo L.Z., Fu Q., Lu W.D. 2011. A simple and rapid plate assay for screening of inulin-degrading microorganisms using Lugol’s iodine solution. African Journal of Biotechnology, 10(12), 9518–9521.
  • 20. Mesbah N.M. 2022. Industrial biotechnology based on enzymes from extreme environments. Frontiers in Bioengineering and Biotechnology, 10, 870083.
  • 21. Orro A., Cappelletti M., D’Ursi P., Milanesi L., Di Canito A., Zampolli J., Collina E., Decorosi F., Viti C., Fedi S., Presentato A., Zannoni D., Di Gennaro P. 2015. Genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One, 10(10), e0139467.
  • 22. Płaza, G. 2014. Biosurfactants: Green surfactants. Polish Academy of Science. Committee of Environmental Engineering, Monograph no 117 Warsaw.
  • 23. Riggio V.A., Ruffino B., Campo G., Comino E., Comoglio C., Zanetti M. 2018. Constructed wetlands for the reuse of industrial wastewater: A case-study. Journal of Cleaner Production, 171(Supplement C), 723–732.
  • 24. Rodrigues J.L., Serres M.H., Tiedje J.M. 2011. Large-scale comparative phenotypic and genomic analyses reveal ecological preferences of Shewanella species and identify metabolic pathways conserved at the genus level. Applied and environmental microbiology, 77(15), 5352–5360.
  • 25. Shebl S., Hussien N.N., Elsabrouty M.H., Osman S.M., Elwakil B.H., Ghareeb D.A., Ali S.M., Ghanem N.B.E.D., Youssef Y.M., Moussad E.E.D.A., Olama Z.A. 2022. Phenol Biodegradation and Bioelectricity Generation by a Native Bacterial Consortium Isolated from Petroleum Refinery Wastewater. Sustainability, 14, 12912.
  • 26. Singer A.C., van der Gast C.J., Thompson I.P. 2005. Perspectives and vision for strain selection in bioaugmentation. TRENDS in Biotechnology, 23(2), 74–77.
  • 27. Smoliński A., Stańczyk K., Kapusta K., Howaniec N. 2012. Chemometric study of the ex situ underground coal gasification wastewater experimental data. Water, Air, & Soil Pollution, 223, 5745–5758.
  • 28. Thompson I.P., Christopher J. van der Gast C.J., Ciric L., Singer A.C. 2005. Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology, 7, 909–915.
  • 29. Tian M., Du D., Zhou W., Zeng X., Cheng G. 2017. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Brazilian Journal of Microbiology, 48, 305–313.
  • 30. Villaverde J., Láiz L., Lara-Moreno A., González-Pimentel J.L., Morillo E. 2019. Bioaugmentation of PAH-contaminated soils with novel specific degrader strains isolated from a contaminated industrial site. Effect of hydroxypropyl-β-cyclodextrin as PAH bioavailability enhancer. Frontiers in Microbiology, 10, 2588.
  • 31. Vymazal J., Zhao Y., Mander Ü. 2021. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecological Engineering,169, 106318.
  • 32. Wiatowski M., Kapusta K., Strugała-Wilczek A., Stańczyk K., Castro-Muñiz A., Suárez-García F., Paredes J.I. 2023. Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products. Energies, 16, 4455.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ab698dd-4f29-4bcb-83c5-4514b9f08317
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.