PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Investigating the capability of low-cost FDM printers in producing microfluidic devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper aims to investigate the possibilities of using 3D printing by fused deposition modelling (FDM) technology for developing micro-fluidic devices by printing a benchmark test part. A low-cost desktop printer is evaluated to compare the minimum possible diameter size, and accuracy in the microchannel body. Design/methodology/approach: The parts were designed using SolidWorks 2016 CAD software and printed using a low-cost desktop FDM printer and Polylactic acid (PLA) filament. Findings: Desktop 3D printers are capable of printing open microchannels with minimum dimensions of 300 μm width and 200 μm depth. Research limitations/implications: Future works should focus on developing new materials and optimizing the process parameters of the FDM technique and evaluating other 3D printing technologies and different printers. Originality/value: The paper shows the possibility of desktop 3D printers in printing microfluidic devices and provides a design of a benchmark part for testing and evaluating printing resolution and accuracy.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • MMC, University Abdelmalek Essaâdi, Faculty of Sciences and Techniques, Tangier, Morocco
autor
  • MMC, University Abdelmalek Essaâdi, Faculty of Sciences and Techniques, Tangier, Morocco
Bibliografia
  • [1] J.M. Lee, M. Zhang, W.Y. Yeong, Characterization and evaluation of 3D printed microfluidic chip for cell processing, Microfluidics and Nanofluidics 20/1 (2016) 5. DOI: https://doi.org/10.1007/s10404-015-1688-8
  • [2] J. Wang, C. Shao, Y. Wang, L. Sun, Y. Zhao, Microfluidics for Medical Additive Manufacturing, Engineering 6/11 (2020) 1244-1257. DOI: https://doi.org/10.1016/j.eng.2020.10.001
  • [3] L. Wang, M. Pumera, Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices, TrAC Trends in Analytical Chemistry 135 (2021) 116151. DOI: https://doi.org/10.1016/j.trac.2020.116151
  • [4] G.V. Casquillas, T. Houssin, Microfluidics and microfluidic devices: a review. Available from: https://www.elveflow.com/microfluidic-reviews/general-microfluidics/microfluidics-and-microfluidic-device-a-review/
  • [5] F. Li, N.P. Macdonald, R.M. Guijt, M.C. Breadmore, Using Printing Orientation for Tuning Fluidic Behavior in Microfluidic Chips Made by Fused Deposition Modeling 3D Printing, Analytical Chemistry 89/23 (2017) 12805-12811. DOI: https://doi.org/10.1021/acs.analchem.7b03228
  • [6] M.D. Tarn, N. Pamme, Microfluidics, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, 2014. DOI: https://doi.org/10.1016/B978-0-12-409547-2.05351-8
  • [7] M.A.A. Rehmani, S.A. Jaywant, K.M. Arif, Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems, Micromachines 12/1 (2021) 14. DOI: https://doi.org/10.3390/mi12010014
  • [8] N. Bhattacharjee, A. Urrios, S. Kang, A. Folch, The upcoming 3D-printing revolution in microfluidics, Lab on a Chip 16/10 (2016) 1720-1742. DOI: https://doi.org/10.1039/c6lc00163g
  • [9] V.A. Lifton, G. Lifton, S. Simon, Options for additive rapid prototyping methods (3D printing) in MEMS tech-nology, Rapid Prototyping Journal 20/5 (2014) 403- 412. DOI: https://doi.org/10.1108/RPJ-04-2013-0038
  • [10] A.K. Au, W. Huynh, L.F. Horowitz, A. Folch, 3D-Printed Microfluidics, Angewandte Chemie 128/12 (2016) 3926-3946 (in German). DOI: https://doi.org/10.1002/ange.201504382
  • [11] N.P. Macdonald, J.M. Cabot, P. Smejkal, R.M. Guijt, B. Paull, M.C. Breadmore, Comparing microfluidic performance of three-dimensional (3D) printing plat-forms, Analytical Chemistry 89/7 (2017) 3858-3866. DOI: https://doi.org/10.1021/acs.analchem.7b00136
  • [12] M.J. Beauchamp, H. Gong, A.T. Woolley, G.P. Nordin, 3D printed microfluidic features using dose control in X, Y, and Z dimensions, Micromachines 9/7 (2018) 326. DOI: https://doi.org/10.3390/mi9070326
  • [13] G. Weisgrab, A. Ovsianikov, P.F. Costa, Functional 3D Printing for Microfluidic Chips, Advanced Materials Technologies 4/10 (2019) 1900275. DOI: https://doi.org/10.1002/admt.201900275
  • [14] T. Blachowicz, A. Ehrmann, 3D printed MEMS technology-recent developments and applications, Micromachines 11/4 (2020) 434. DOI: https://doi.org/10.3390/MI11040434
  • [15] N. Gyimah, O. Scheler, T. Rang, T. Pardy, Can 3D printing bring droplet microfluidics to every lab? ‒ a systematic review, Micromachines 12/3 (2021) 339. DOI: https://doi.org/10.3390/mi12030339
  • [16] G. Gaal, M. Mendes, T.P. de Almeida, M.H.O. Piazzetta, Â.L. Gobbi, A. Riul, V. Rodrigues, Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing, Sensors and Actuators, B: Chemical 242 (2017) 35-40. DOI: https://doi.org/10.1016/j.snb.2016.10.110
  • [17] Y. Li, J. Bøtker, J. Rantanen, M. Yang, A. Bohr, In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nano-complexes, International Journal of Pharmaceutics 583 (2020) 119388. DOI: https://doi.org/10.1016/j.ijpharm.2020.119388
  • [18] V. Romanov, R. Samuel, M. Chaharlang, A.R. Jafek, A. Frost, B.K. Gale, FDM 3D Printing of High- Pressure, Heat-Resistant, Transparent Microfluidic Devices, Analytical Chemistry 90/17 (2018) 10450- 10456. DOI: https://doi.org/10.1021/acs.analchem.8b02356
  • [19] L. Zeng, P. Li, Y. Yao, B. Niu, S. Niu, B. Xu, Recent progresses of 3D printing technologies for structural energy storage devices, Materials Today Nano 12 (2020) 100094. DOI: https://doi.org/10.1016/j.mtnano.2020.100094
  • [20] J. Chen, C.-Y. Liu, X. Wang, E. Sweet, N. Liu, X. Gong, L. Lin, 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation, Biosensors and Bioelectronics 150 (2020) 111900. DOI: https://doi.org/10.1016/j.bios.2019.111900
  • [21] E.J. Carrasco-Correa, E.F. Simó-Alfonso, J.M. Herrero- Martínez, M. Miró, The emerging role of 3D printing in the fabrication of detection systems, TrAC Trends in Analytical Chemistry 136 (2021) 116177. DOI: https://doi.org/10.1016/j.trac.2020.116177
  • [22] E. Fornells, E. Murray, S. Waheed, A. Morrin, D. Diamond, B. Paull, M. Breadmore, Integrated 3D printed heaters for microfluidic applications: Ammonium analysis within environmental water, Analytica Chimica Acta 1098 (2020) 94-101. DOI: https://doi.org/10.1016/j.aca.2019.11.025
  • [23] G. Chen, Y. Xu, P.C.L. Kwok, L. Kang, Pharmaceutical Applications of 3D Printing, Additive Manufacturing 34 (2020) 101209. DOI: https://doi.org/10.1016/j.addma.2020.101209
  • [24] G. Gonzalez, I. Roppolo, C.F. Pirri, A. Chiappone, Current and emerging trends in polymeric 3D printed microfluidic devices, Additive Manufacturing 55 (2022) 102867. DOI: https://doi.org/10.1016/j.addma.2022.102867
  • [25] M.D. Nelson, N. Ramkumar, B.K. Gale, Flexible, transparent, sub-100 μm microfluidic channels with fused deposition modeling 3D-printed thermoplastic polyurethane, Journal of Micromechanics and Micro-engineering 29/9 (2019) 095010. DOI: https://doi.org/10.1088/1361-6439/ab2f26
  • [26] L.P. Bressan, T.M. Lima, G.D. da Silveira, J.A.F. da Silva, Low-cost and simple FDM-based 3D-printed microfluidic device for the synthesis of metallic core– shell nanoparticles, SN Applied Sciences 2/5 (2020) 984. DOI: https://doi.org/10.1007/s42452-020-2768-2
  • [27] F. Kotz, M. Mader, N. Dellen, P. Risch, A. Kick, D. Helmer, B.E. Rapp, Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate, Micromachines 11/9 (2020) 873. DOI: https://doi.org/10.3390/mi11090873
  • [28] A.E. Ongaro, D. Di Giuseppe, A. Kermanizadeh, A.M. Crespo, A. Mencattini, L. Ghibelli, V. Mancini, K.L. Wlodarczyk, D.P. Hand, E. Martinelli, V. Stone, N. Howarth, V. La Carrubba, V. Pensabene, M. Kersaudy- Kerhoas, Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications, Analytical Chemistry 92/9 (2020) 6693-6701. DOI: https://doi.org/10.1021/acs.analchem.0c00651
  • [29] L.P. Bressan, J. Robles-Najar, C.B. Adamo, R.F. Quero, B.M.C. Costa, D.P. de Jesus, J.A.F. da Silva, 3D-printed microfluidic device for the synthesis of silver and gold nanoparticles, Microchemical Journal 146 (2019) 1083-1089. DOI: https://doi.org/10.1016/j.microc.2019.02.043
  • [30] L.C. Duarte, I. Pereira, L.I.L. Maciel, B.G. Vaz, W.K.T. Coltro, 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry, Analytica Chimica Acta 1190 (2022) 339252. DOI: https://doi.org/10.1016/j.aca.2021.339252
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ab0bf9a-5639-448a-b600-41a000fe03b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.