PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monazite stability and the maintenance of Th-U-total Pb ages during post-magmatic processes in granitoids and host metasedimentary rocks: A case study from the Sudetes (SW Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stability and maintenance of the age record of monazite during post-magmatic processes were studied in granitic and host metasedimentary rocks from the Sudetes (SW Poland). Unaltered monazite in the Kłodzko–Złoty Stok granitoid provided a Th-U-total Pb age of 329 ± 5 Ma, which was related to the late stage of pluton emplacement. In contrast, monazite in the Jawornik granitoid remained unaltered or was partially replaced by secondary phases, including (1) allanite, epidote and, occasionally, apatite; (2) cheralite, allanite and a mixture of clays, Fe oxides and possible unknown rare earth element (REE) phases; and (3) K-feldspar and cheralite with subsequent formation of titanite. Different alteration products on the thin section scale indicate the local character of the post-magmatic processes affecting monazite induced by alkali-rich fluids. The altered and unaltered monazite grains both yielded a Th-U-total Pb age of 343 ± 4 Ma. The Th-U-total Pb ages of the monazite in the accompanying metasedimentary rocks thermally affected by intruding magmas were also constrained. In the paragneiss in contact with the Jawornik granitoid, the unaltered monazite and monazite partially replaced by allanite yielded an age of 344 ± 5 Ma. The monazite from the mica schist, farther from the contact with the granitoids, exhibited an age of 336 ± 4.5 Ma. The 344–336 Ma ages exhibited a record of monazite (re)growth during prolonged Variscan metamorphism. The predominant early Viséan ages constrain the timing of the development of the Złoty Stok Skrzynka Shear Zone and the emplacement of the Jawornik granitoid intrusion. The age results, which are consistent with previous geochronology, indicate that the partial alteration of the monazite did not affect the internal domains or the maintenance of the monazite ages. Thus, this study reveals that monazite geochronology can provide meaningful data in crystalline rocks affected by fluid-induced post-magmatic processes.
Rocznik
Strony
106--123
Opis fizyczny
Bibliogr. 76 poz., fot., mapy, rys., tab., wykr.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Geological Sciences, Senacka 1,31-002 Kraków, Poland
  • Polish Academy of Sciences, Institute of Geological Sciences, Podwale 75, 50-449 Wrocław, Poland
Bibliografia
  • 1. Awdankiewicz, M., 2007. Late Palaeozoic lamprophyres and associated mafic subvolcanic rocks ofthe Sudetes (SW Poland): petrology, geochemistry and petrogenesis. Geologia Sudetica, 39: 11-97.
  • 2. Bachliński, R., Bagiński, B., 2007. Kłodzko-Złoty Stok granitoid massif. Archivum Mineralogiae Monograph, 1: 261-273.
  • 3. Berger, A., Gnos, E., Janots, E., Whitehouse, M., Soom, M., Frei, R., Waight, T.E., 2013. Dating brittle tectonic movements with cleft monazite: fluid-rock interaction and formation of REE minerals. Tectonics, 32: 1176-1189.
  • 4. Białek, D., 2014. SHRIMP U-Pb zircon geochronology of the Jawornik granitoids (West Sudetes, Poland). Geologia Sudetica, 42: 4.
  • 5. Białek, D., Werner, T., 2002. AMS and deformation patterns in the Jawornickie Granitoids, Rychlebske Hory - Preliminary data. Geolines, 14: 14-15.
  • 6. Białek, D., Werner, T., 2004. Geochemistry and geochronology of the Javornik Granodiorite and its geodynamic significance in the eastern Variscan belt. Geolines, 17: 22-23.
  • 7. Broska, I., Siman, P., 1998. The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. Geologica Carpathica, 49: 161-167.
  • 8. Broska, I., Harlov, D., Tropper, P., Siman, P., 2005a. Formation of magmatic titanite and titanite-ilmenite phase relations during granite alteration in the Tribeč Mountains, Western Carpathians, Slovakia. Lithos, 95: 58-71.
  • 9. Broska, I., Williams, C.T., Janák, M., Nagy, G., 2005b. Alteration and breakdown of xenot ime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos, 82: 71-83.
  • 10. Budzyń, B., Hetherington, C.J., Williams, M.L., Jercinovic, M.J., Michalik, M., 2010. Fluid-mineral interactions and constraints on monazite alterations during metamorphism. Mineralogical Magazine, 74: 633-655.
  • 11. Budzyń, B., Harlov, D.E., Williams, M.L., Jercinovic, M.J., 2011. Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96: 1547-1567.
  • 12. Budzyń, B., Harlov, D.E., Majka, J., Kozub, G.A., 2014. Experimental constraints on the monazite-fluorapatite-alla nite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote phase relations as a function of pressure, temperature, and Cavs. Na activity in the fluid. Geophysical Research Abstracts, 16: EGU2014-8583.
  • 13. Budzyń, B., Jastrzębski, M., Kozub-Budzyń, G.A., Konečný, P., 2015a. Monazite Th-U-total Pb geochronology and P-T thermodynamic modeliing in a revision of the HP-hT metamorphic record in granulites from Stary Gierałtów (NE Orlica-Śnieżnik Dome, SW Poland). Geological Quarterly, 59 (4): 700-717.
  • 14. Budzyń, B., Konečný, P., Kozub-Budzyń, G.A., 2015b. Stability of monazite and disturbance of the Th-U-Pb system under experimental conditions of 250-350°C and 200-400 MPa. Annales Societatis Geologorum Poloniae, 85: 405-424.
  • 15. Cherniak, D.J., Watson, E.B., Grove, M., Harrison, T.M., 2004. Pb diffusion in monazite: a combined RBS/SIMS study. Geochimica et Cosmochimica Acta, 68: 829-840.
  • 16. Cymerman, Z., 1996. The Złoty Stok-Trzebieszowice regional shear zone: the boundary of terranes in the Góry Złote Mts. (Sudetes). Geological Quarterly, 40 (1): 89-118.
  • 17. Cymerman, Z., 1997. Structure, kinematics and an evolution of the Orlica-Śnieżnik Dome, Sudetes. Prace Państwowego Instytutu Geologicznego,156.
  • 18. Cwojdziński, S., 1977. The relation of Jawornik granitoids to deformations of Lądek-Śnieżnik metamorphic area (in Polish with English summary). Geological Quarterly, 21 (3): 451-466.
  • 19. Cwojdziński, S., 1979. Szczegółowa mapa geologiczna Sudetów w skali 1:25 000, arkusz Trzebieszowice. Instytut Geologiczny, Warszawa.
  • 20. Don, J., 1964. The Złote and Krowiarki Mts. as structural elements of the Śnieżnik metamorphic massif (in Polish with English summary). Geologia Sudetica, 1: 79-117.
  • 21. Finger, F., Broska, I., Roberts, M.P., Schermaier, A., 1998. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist, 83: 248-258.
  • 22. Gardes, E., Jaoul, O., Montel, J., Seydoux-Guillaume, A.M., Wirth, R., 2006. Pb diffusion in monazite: an experimental study of Pb2+ + Th4+ o 2Nd3+ interdiffusion. Geochimica et Cosmochimica Acta, 70: 2325-2336.
  • 23. Gordon, S.M., Schneider, D.A., Manecki, M., Holm D.K., 2005. Exhumation and metamorphism of an ultra high-grade terrane: geochronometric investigations of the Sudete Mountains (Bohemia), Poland and Czech Republic. Journal of the Geological Society, 162: 841-855.
  • 24. Goswami-Banerjee, S., Robyr, M., 2015. Pressure and temperature conditions for crystallization of metamorphic allanite and monazite in metapelites: a case study from the Miyar Valley (High Himalayan Crystalline of Zanskar, NW India). Journal of Metamorphic Geology, 33: 535-556.
  • 25. Gotowała, R., 2003. Tectonic involvement of the Javornik Granitoids - Skrzynka-Złoty Stok Shear Zone (Sudetes). Polskie Towarzystwo Mineralogiczne - Prace Specjalne, 23: 61-63.
  • 26. Harlov, D.E., Hetheri ngton, C.J., 2010. Partial high-grade alteration of monazite using alkali-bearing fluids: experiment and nature. American Mineralogist, 95: 1105-1108.
  • 27. Harlov, D.E., Wirth, R., Hetherington, C.J., 2011. Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology, 162: 329-348.
  • 28. Hetherington, C.J., Harlov, D.E., Budzyń, B., 2010. Experimental initiation of dissolution-reprecipitation reactions in monazite and xenotime: the role of fluid composition. Mineralogy and Petrology, 99: 165-184.
  • 29. Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.-O., Spandler, C., 2008. Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610°C. Jour nal of Metamorphic Geology, 26: 509-526.
  • 30. Jastrzębski, M., Żelaźniewicz, A., Majka, J., Murtezi, M., Bazarnik, J., Kapitonov, I., 2013. Constraints on the Devonian-Carboniferous closure of the Rheic Ocean from a multi-method geochronology study of the Staré Město Belt in the Sudetes (Poland and the Czech Republic). Lithos, 170-171: 54-72.
  • 31. Jastrzębski, M., Stawikowski, W., Budzyń, B., Orłowski, R., 2014. Migmatization and large-scale folding in the Orlica-Śnieżnik Dome, NE Bohemian Massif: pressure-temperature-time-deformation constraints on Variscan terrane assembly. Tectonophysics, 630: 54-74.
  • 32. Jastrzębski, M., Budzyń, B., Stawikowski W., 2016. Structural, metamorphic and geochronological record in the Goszów quartzites of the Orlica-Śnieżnik Dome (SW Poland): implications for the polyphase Variscan tectonometamorphism of the Saxothuringian Terrane. Geological Journal, 51: 455-479.
  • 33. Jercinovic, M.J., Williams, M.L., 2005. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: background acquisition, interferences, and Beam Irradiation Effects. American Mineralogist, 90: 526-246.
  • 34. Jercinovic, M.J., Williams, M.L., Lane, E.D., 2008. In situ trace element analysis in complex, multi-phase materials by EPMA. Chemical Geology, 254: 197-215.
  • 35. Konečný, P., Siman, P., Holický, I., Janák, M., Kollárová, V., 2004. Method of monazite dating by means of the electron microprobe (in Slovak with English abstract). Mineralia Slovaca, 36: 225-235.
  • 36. Lorenc, M.W., 1994. Role of basic magmas in the granitoid evolution (a comparative study of some Hercynian massifs) (in Polish with English summary). Geologia Sudetica, 28 (1): 3-130.
  • 37. Majka, J., Budzyń, B., 2006. Monazite breakdown in metapelites from Wedel Jarlsberg Land, Svalbard - preliminary results. Mineralogia Polonica, 37: 61-69.
  • 38. Mikulski, S.Z., Williams, I.S., 2014. Zircon U-Pb ages of granitoid apophyses in the western part of the Kłodzko-Złoty Stok Granite Pluton (SW Poland). Geological Quarterly, 58 (2): 251-262.
  • 39. Mikulski, S.Z., Williams, I.S., Bagiński, B., 2013. Early Carboniferous (Viséan) emplacements of the collisional Kłodzko-Złoty Stok granitoids (Sudetes, SW Po i and): constrains from geochemical and U-Pb zircon age data. International Journal of Earth Sciences, 102: 1007-1027.
  • 40. Montel, J.M., Foret, S., Veschambre, M., Nicollet, C., Provost, A., 1996. Electron microprobe dating of monazite. Chemical Geology, 131: 37-53.
  • 41. Murtezi, M., 2006. The acid metavolcan ic rocks of the Orlica-Śnieżnik Dome: their origin and tectono-metamorphic evolution. Geologia Sudetica, 38: 1-38.
  • 42. Oberc-Dziedzic, T., Kryza, R., Pin C., 2015. Variscan granitoids related to shear zones and faults: examples from the Ceniral Sudetes (Bohemian Massif) and the Middle Odra Fault Zone. International Journal of Earth Sciences, 104: 1139-1166.
  • 43. Ondrejka, M., Uher, P., Putiš, M., Broska, I., Bačík, P., Konečný, P., Schmiedt, I., 2012. Two-stage breakdown of monazite by post-magmatic and metamorphic flui ds: An example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos, 142-143: 245-255.
  • 44. Pan, Y., Fleet, M.E., 1996. Rare earth element mobili ty during prograde granulite facies metamorphism: significance of fluorine. Contributions to Mineralogy and Petrology, 123: 251-262.
  • 45. Petrík, I., Konečný, P., 2009. Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the Nízke Tatry Mountains, Western Carpathians, Slovakia: chemical dating and evidence for disequilibrium melting. American Mineralogist, 94: 957-974.
  • 46. Petrík, I., Broska, I., Lipka, J., Siman, P., 1995. Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geologica Carpathica, 46: 79-94.
  • 47. Petrík, I., Konečný, P., Kováčik, M., Holický, I., 2006. Electron microprobe dating of monazite from the Nízke Tatry Mountains orthogneisses (Western Carpathians, Slovakia). Geologica Carpathica, 57: 227-242.
  • 48. Poitrasson, F., Chenery, S., Bland, D.J., 1996. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth and Planetary Science Letters, 145: 79-96.
  • 49. Poitrasson, F., Chenery, S., Shepherd, T.J., 2000. Electron microprobe and LA-ICPMS study of monazite hydrothermal alteration; implications for U-Th-Pb geochronology and nuclear ceramics. Geochimica et Cosmochimica Acta, 64: 3283-3297.
  • 50. Popa, K., Shvareva, T., Mazeina, L., Colineau, E., Wastin, F., Konings, R.J.M., Navrotsky, A., 2008. Thermodynamic properties of CaTh(PO4)2 synthetic cheralite. American Mineralogist, 93: 1356-1362.
  • 51. Putnis, A., 2002. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66: 689-708.
  • 52. Putnis, A., 2009. Mineral replacement reactions. Reviews in Mineralogy and Geochemistry, 70: 87-124.
  • 53. Putnis, A., Austrheim, H., 2012. Mechanisms of metasomatism and metamorphism on the local mineral scale: The role of dissolution-reprecipitation during mineral re-equilibration. In: Metasomatism and the Chemical Transformation of Rock (eds. D.E. Harlov and H. Austrheim): 141-170. Lecture Notes in Earth System Sciences, Springer-Verlag, Berlin, Heidelberg.
  • 54. Pyle, J.M., Spear, F.S., Wark, D.A., Daniel, Ch.G., Storm, L.C., 2005. Contributions to precision and accuracy of monazite microprobe ages. American Mineralogist, 90: 547-577.
  • 55. Sawicki, L., 1995. Geoi ogi cal Map of Lower Silesia with adjacent Czech and German Territories 1:100,000. Państwowy Instytut Geologiczny, Warszawa.
  • 56. Seydoux-Guillaume, A.M., Paquette, J.L., Wiedenbeck, M., Montel, J.M., Heinrich, W., 2002. Experimental resetting of the U-Th-Pb systems in monazite. Chemical Geology, 191: 165-181.
  • 57. Shaw, D.M., 1956. Geochemistry of pelitic rocks. Part III: major elements and general geochemistry. GSA Bulletin, 67: 919-934.
  • 58. Skrzypek, E., Lehmann, J., Szczepański, J., Anczkiewicz, R., Štípská, P., Schulmann, K., Kröner, A., Białek, D., 2014. Time-scale of deformation and intertectonic phases revealed by P-T-D-t relationships in the orogenic middle crust of the Orlica-Snieznik Dome, Polish/Czech Central Sudetes. Journal of Metamorphic Geology, 32: 981-1003.
  • 59. Spear, F.S., 2010. Monazite-allanite phase relations in metapelites. Chemical Geology, 279: 55-62.
  • 60. Spear, F.S., Pyle, J.M., 2010. Theoretical modeling of monazite growth in a low-Ca metapelite. Chemical Geology, 273: 111-119.
  • 61. Spear, F.S., Pyle, J.M., Cherniak, D., 2009. Limitations of chemical dating of monazite. Chemical Geology, 266: 227-239.
  • 62. Suzuki, K., Adachi, M., 1991. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon, and xenotime. Geochemical Journal, 25: 357-376.
  • 63. Suzuki, K., Adachi, M., 1994. Middle Precambrian detrital monazite and zircon the Hide gneiss on Oki-Dogo island, Japan: their origin and implications for the correlation of basement gneiss of southwest Japan: constraints from CHIME monazite ages of gneisses and granitoids. Journal of Metamorphic Geology, 16: 23-37.
  • 64. Suzuki, K., Kato, T., 2008. CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Research, 14: 569-586.
  • 65. Tartèse, R., Ruffet, G., Poujol, M., Boulvais, P., Ire iand, T.R., 2011. Simultaneous resetting of the muscovite and monazite U-Pb geochronometers: a story of fluids. Terra Nova, 23: 390-398.
  • 66. Teufel, S., Heinrich, W., 1997. Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chemical Geology, 137: 273-281.
  • 67. Townsend, K.J., Miller, C.F., D'Andrea, J.L., Ayers, J.C., Harrison, T.M., Coath, C.D., 2000. Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chemical Geology, 172: 95-112.
  • 68. Vozárová, A., Konečný, P., Šarinová, K., Vozár, J., 2014. Ordovician and Cretaceous tectonothermal history of the Southern Gemericum Unit from microprobe monazite geochronology (Western Carpathians, Slovakia). International Journal of Earth Sciences, 103: 1005-1022.
  • 69. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187.
  • 70. Wierzchołowski, B., 1976. Granitoids of the Kłodzko-Złoty Stok massif and their contact influence on the country rocks (petrographic characteristics) (in Polish with English summary). Geologia Sudetica, 11: 7-147.
  • 71. Williams, M.L., Jercinovic, M.J., 2002. Microprobe monazite geochronology: putting absolute time into microstructural analyses. Journal of Structural Geology, 24: 1013-1028.
  • 72. Williams, M.L., Jercinovic, M.J., Goncalves, P., Mahan, K.H., 2006. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chemical Geology, 225: 1-15.
  • 73. Williams, M.L., Jercinovic, M.J., Hetherington, C.J., 2007. Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences, 35: 137-175.
  • 74. Williams, M.L., Jercinovic, M.J., Harlov, D.E., Budzyń, B., Hetherington, C.J., 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology, 283: 218-225.
  • 75. Wojciechowska, I., 1975. Tectonics of the Kłodzko-Złoty Stok granitoide massif and its country rocks in the light of the mesostructural investigation (in Polish with English sum mary). Geologia Sudetica,10: 61-121.
  • 76. Wojciechowska, I., 1993. Geological setting and tectonics of the Złote Góry Mts and the Krowiarki Mts at the background for ore mineralization evolution (Ziemia Kłodzka region, the Sudetes) (in Polish with English abstract). Prace Geologiczno-Mineralogiczne, Acta Universitatis Wratislaviensis, 33: 5-49.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1aaccdac-989a-4114-9e80-3eb4607f1025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.