PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on energy absorption properties of open-cell copper foam for current collector of Li-ions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quasi-static uniaxial compressive tests of open-cell copper (Cu) foams (OCCF) were carried out on an in-situ bi-direction tension/compress testing machine (IBTC 2000). The effects of strain rate, porosity and pore size on the energy absorption of open-cell copper foams were investigated to reveal the energy absorption mechanism. The results show that three performance parameters of open-cell copper foams (OCCF), involving compressive strength, Young modulus and yield stress, increase simultaneously with an increase of strain rate and reduce with increasing porosity and pore size. Furthermore, the energy absorption capacity of OCCF increases with an increase of porosity and pore size. However, energy absorption efficiency increases with increasing porosity and decreasing pore size. The finite element simulation results show that the two-dimensional stochastic model can predict the energy absorption performance of the foam during the compressive process. The large permanent plastic deformation at the weak edge hole is the main factor that affects the energy absorption.
Wydawca
Rocznik
Strony
8--15
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, China
autor
  • School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, China
autor
  • School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, China
autor
  • School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, China
autor
  • School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, China
autor
  • School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, China
autor
  • School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, China
autor
  • School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, China
Bibliografia
  • [1] CHIANG Y. M., Science, 330(2010), 1485.
  • [2] KALNAUSA S., RHODES K., DANIEL C., J. Power Sources, 196 (2011), 8116.
  • [3] LIANG B., LIU Y.P., XU Y.H., J. Power Sources, 267 (2014), 469.
  • [4] XIE W., ZHU X.K., YI S.H., KUANG J.C., CHENG H.F., Mater. Des., 90 (2016), 38.
  • [5] WU X.W., LI Y.H., LI C.C., HE Z.X., XIANG Y.H., J. Power Sources, 300 (2015), 453.
  • [6] CHEN J.L., CHEN J., CHEN D., ZHOU Y., LI W., Mater. Lett., 117 (2014), 162.
  • [7] LI W., CHEN J., LIANG H., LI C., Mater. Sci., 33 (2015), 356.
  • [8] YAO M., OKUNO K., IWAKI T., AWAZU T., SAKAI T., J. Power Sources, 195 (2010), 2077.
  • [9] BAGGETTO L., VERHAEGH N.A.M., NIESSEN R.A.H., ROOZEBOOM F., JUMAS J.C., NOTTEN P.H.L., J. Electrochem. Soc., 157 (2010), 340.
  • [10] CHOU C.Y., KIM H., HWANG G.S., J. Phys. Chem. C, 115 (2011), 20018.
  • [11] MCDOWELL M. T., LEE S.W., WANG C.M., CUI Y., Nano Energy, 1 (2012), 401.
  • [12] NGUYEN C.C., SONG S.W., Electrochim. Acta, 55 (2010), 3026.
  • [13] BEAULIEU L.Y., BEATTIE S.D., HATCHARDA T.D., DAHN J.R., J. Electrochem. Soc., 150 (2003), 419.
  • [14] BOGART T.D., CHOCKLA A.M., KORGEL B.A., Curr. Opin. Chem. Eng., 2 (2013), 286.
  • [15] JIANG T., ZHANG S.C., QIU X.P., ZHU W.T, CHEN L.Q., J. Power Sources, 166 (2007), 503.
  • [16] HUANG L., CAI J.S., HE Y., KE F. S., SUN S.G., Electrochem. Commun., 11 (2009), 950.
  • [17] KE F.S., HUANG L., WEI H.B., CAI J.S., FAN X.Y., YANG F.Z., SUN S.G., J. Power Sources, 170 (2007), 450.
  • [18] KE F.S., HUANG L., CAI J.S., SUN S.G., Electrochim. Acta, 52(2007), 6741.
  • [19] SHIN H.C., LIU M., Adv. Funct. Mater., 15 (2005), 582.
  • [20] ARBIZZANI C., BENINATI M., LAZZARI M., MASTRAGOSTINO M., J. Power Sources, 158 (2006), 635.
  • [21] ZHAO H.P., JIANG C.Y., HE X.M., REN J.G., WAN C.R., J. Membr. Sci., 310 (2008), 1.
  • [22] IONICA B.C.M., LIPPENS P.E., ALDON L., OLIVIER F.J., JUMAS J.C., Chem. Mater., 18 (2006), 6442.
  • [23] QIN F., ZHANG J.H., ZHANG Y.D., LIU J.C., GONG Z.M., Compos. Struct., 124 (2015), 409.
  • [24] JUNG A., BEEX L.A.A., DIEBELS S., BORDAS S.P.A., Mater. Des., 87 (2015), 36.
  • [25] SUN Y., RIGOBERTO B., VANDERKLOK A. J., TEKALUR S. A., WANG W., LEE I., Mater. Sci. Eng. A-Adv., 592 (2014), 111.
  • [26] RAJAK D.K., KUMARASWAMIDHAS L.A., DAS S., KUMARAN S.S., J. Alloy. Compd., 656 (2016), 218.
  • [27] ZUMAN P., Microchem J., 75(2003), 139.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1aabf3c0-13f7-4e46-89e8-28022a445ad6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.