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Stochastic airfoil flutter in an unsteady flow is discussed using the stochastic P-bifurcation
method, taking into account potential effects of the longitudinal and vertical turbulent flow.
The critical conditions of stochastic P-bifurcation are deduced by stochastic singularity
analysis in order to discuss stochastic P-bifurcation phenomena. The results of parameter
analysis show that as the turbulent intensity increases, the critical flutter velocity for sharp
stochastic airfoil flutter decreases. And the large amplitude vibration comes earlier; an in-
crease in the turbulent scale causes an earlier appearance of the critical velocity for large
amplitude stochastic flutter.
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Nomenclature

α, h – airfoil motion in plunge and heave directions
IEA – aifoil moment of inertia about elastic axis
Sα – static moment Sα = mxαb
Kα,Kh – linear stiffness coefficient at α and h, respectively
Kα3,Kα5 – nonlinear stiffness coefficients
L∗, L – scale of turbulence and non-dimensional scale of turbulence (L∗/b)
CL(t), CM (t) – lift force and aerodynamic moment about elastic axis
m – airfoil mass per unit length
Q∗ – total freestream velocity Q∗m + u

∗

T

Q∗m, Qm – mean freestream velocity and non-dimensional mean freestream
velocity (Q∗m/bωα)

u∗T , w
∗

T – longitudinal and vertical turbulence velocities
τ – non-dimensional time (τ = Q∗mt/b)
µ – perturbation nearby Hopf bifurcation point
r – aero-elastic modal amplitude
rαrξ – amplitude of α and of ξ, respectively

1. Introduction

Turbulence and other stochastic perturbation sources are often ignored in airfoil flutter studies,
though turbulence-induced stochastic perturbation does exist during aircraft flight. Atmospheric
turbulence, for example, plays a great role in aircraft design.
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In the 1990s, Poirel and Price (1997, 2001, 2003b, 2007), Poirel et al. (2005, 2006) and his col-
leagues pioneered researches on turbulence-induced stochastic flutter by addressing the existence
of stochastic turbulent perturbation in their studies. Poirel and Price (1997) examined stability
of an airfoil model with structural nonlinearity in the pitch direction by incorporating the effects
of turbulence into the longitudinal inflow velocity presented in Price et al. (2013). In Lee et al.
(1999), a fairly complete description of airfoil flutter with structural or aerodynamic nonlinearity
was involved. Numerically investigated were the effects of longitudinal turbulent perturbation
on the system Hopf bifurcation and airfoil flutter boundary. Poirel and Price (2003a) addressed
the effects of both longitudinal and vertical turbulences in their airfoil model. Poirel and Price
(2007) pioneered a stochastic bifurcation study of the airfoil flutter system by looking at the
effects of stochastic P-bifurcation of a binary airfoil model respecting to turbulent intensity and
system nonlinear rigidity through Monte-Carlo simulation. It was found that the bifurcation was
characterized by a change in shape of the response probability structure, while no discontinuity
in the variation of the largest Lyapunov exponent when airspeed was observed.

Zheng (2007) analyzed the airfoil RMS(root mean square) response of a binary airfoil model
of a deterministic system with double stable limit cycle flutter using stochastic theory taking
into account the effects of flow velocity and turbulent intensity on the system RMS. Zhao (2009)
investigated stochastic flutter of a binary airfoil model of a deterministic system with Hopf
bifurcation, and described the system stochastic bifurcation with the system joint probability
density, marginal probability density and the maximum Lyapunov exponent. Huang et al. (2010)
analyzed stochastic flutter of an airfoil model with Hopf bifurcation, and discussed the stochastic
stability of the airfoil under parametrically-induced white Gaussian noise through Monte Carlo
numerical simulation. Chassaing et al. (2012) looked at system stochastic limit cycle oscillation
(LCO) by applying an adaptive spectrogram to stochastic nonlinear aerodynamic modeling.

Some scholars have also carried out experimental research on the airfoil flutter. Poirel et al.
conducted a number of wind tunnel tests on NACA0012 airfoil. Poirel and Yuan (2010) and
Poirel et al. (2008) examined how LCO took place under low Reynolds numbers, and how LCO
in the airfoil pitch direction took place in response to laminar separation. Yuan et al. (2013) and
Poirel and Mendes (2014) observed mild and sharp LCO under different initial conditions.

Current research of the airfoil flutter system under stochastic perturbation is not all-inclusive
yet; few authors have turned their eyes to stochastic turbulent perturbation and airfoil multi-
-stability. Nevertheless, studying stochastic flutter of an aircraft under turbulent perturbation is
of great theoretical and referential importance to airfoil design. The complexity and particula-
rity of the aero-elastic system have confined theoretical solutions for stochastic airfoil flutter to
low-dimensional simple systems, which merely address simple system bifurcation such as Hopf bi-
furcation and rarely involve complex or stochastic bifurcation. Also, studies of high-dimensional,
nonlinear stochastic flutter are mostly limited to numerical or experimental approaches. Hence,
it becomes extremely necessary to develop an efficient, accurate, highly applicable theoretical
method to examine the effects of stochastic turbulence and other parameters.

This paper discusses stochastic airfoil flutter in a turbulence flow through stochastic
P-bifurcation analysis, taking into account the potential effects of longitudinal and vertical
turbulent intensity and scale. The modified averaging method is applied herein to reduce the
system dimension. The critical parametric conditions for stochastic P-bifurcation of the airfoil
are deduced by means of stochastic averaging and singularity theory.

2. High-dimensional airfoil flutter mathematical model

Restricting the flow to incompressible conditions, but retaining unsteady (lag) effects, the basic
structural equations are obtained from (Poirel and Price, 2007) and modified to account for a
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non-linear hardening quantic torsional stiffness, this is the source of nonlinearity considered in
this paper

mḧ+ Sαα̈+Dhḣ+Khh+G(h) = −CL(t)

Sαḧ+ IEAα̈+Dαα̇+Kαα+M(α) = CM (t)
(2.1)

CL(t) and CM (t) represent, respectively, the aerodynamic lift force and the aerodynamic
moment about the elastic axis. Our study only considered the structural nonlinear rigidity in
the pitch direction,M(α) = Kα3α

3+Kα5α
5, and ignored in the plunge direction. HenceG(h) = 0

has been selected. The aerodynamic lift and aerodynamic moment are expressed as

CL(t) = −πρb
2(ḧ−Q∗α̇− bahα̈)− 2πρbQ

∗

(

W ∗3/4ϕ(0) −

t
∫

0

W ∗3/4(s)
dϕ(t − s)

ds
ds
)

− 2πρbQ∗m

(

w∗Tψ(0) −

t
∫

0

w∗T (s)
dψ(t− s)

ds
ds
)

CM (t) = πρb
2
[

bahḧ− b
(1

2
− ah
)

Q∗α̇− b2
(

a2h +
1

8

)

α̈
]

+ 2πρb2
(

ah +
1

2

)

Q∗
(

W ∗3/4ϕ(0)

−

t
∫

0

W ∗3/4(s)
dϕ(t − s)

ds
ds
)

+ 2πρb2
(

ah +
1

2

)

Q∗m

(

w∗Tψ(0) −

t
∫

0

w∗T (s)
dψ(t − s)

ds
ds
)

(2.2)

where: W ∗3/4 = ḣ + Q
∗α + b(0.5 − ah)α̇, Q

∗ = Q∗m + u
∗

T , and these terms are influenced by the
turbulent excitation, which is composed of a constant mean part Q∗m and a time-varying compo-
nent u∗T created by the longitudinal turbulence excitation. In Eq. (2.2)2, the unsteady effects are
accounted for using the representation of the function ϕ(t), and Küssner’s function ψ(t) (Poirel
and Price, 2007)

ϕ(t) = 1−A1 exp
(−b1Q

∗

m

b
t
)

−A2 exp
(−b2Q

∗

m

b
t
)

ψ(t) = 1−A3 exp
(−b3Q

∗

m

b
t
)

−A4 exp
(−b4Q

∗

m

b
t
)

A1 = 0.165 A2 = 0.335 b1 = 0.115 b2 = 0.3

A3 = 0.5792 A4 = 0.4208 b3 = 0.1393 b4 = 1.802

For the purpose of analysis and calculation, the unsteady part of aerodynamic models CL(t)
and CM (t) is usually expressed as a solution to a differential equation. And two new variables
R∗1 and R

∗

2 are introduced, then CL(t) and CM (t) can be expressed as

CL(t) = −πρb
2(ḧ−Q∗α̇− bahα̈)− 2πρbQ

∗[W ∗3/4ϕ(0) + Ṙ
∗

1(A1b1 +A2b2)

+R∗1b1b2(A1 +A2)]− 2πρbQ
∗

m[w
∗

Tψ(0) + Ṙ
∗

2(A3b3 +A4b4) +R
∗

2b3b4(A3 +A4)]

CM (t) = πρb
2
[

bahḧ− b
(1

2
− ah
)

Q∗α̇− b2
(

a2h +
1

8

)

α̈
]

+ 2πρb2
(

ah +
1

2

)

Q∗[W ∗3/4ϕ(0) + Ṙ
∗

1(A1b1 +A2b2) +R
∗

1b1b2(A1 +A2)]

+ 2πρb2
(

ah +
1

2

)

Q∗m[w
∗

Tψ(0) + Ṙ
∗

2(A3b3 +A4b4) +R
∗

2b3b4(A3 +A4)]

(2.3)

where

b1 =
b1Q
∗

m

b
b2 =

b2Q
∗

m

b
b3 =

b3Q
∗

m

b
b4 =

b4Q
∗

m

b
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Some additional details of the turbulence modelling are provided by Poirel and Price (Poirel
and Price, 2003a, 2007; Price et al., 2013; Lee et al., 1999). In this paper the vertical turbu-
lence component w∗T acts as an external random forcing, whereas the longitudinal component of
turbulence u∗T acts as a parametric random excitation.
The turbulent velocities w∗T and u

∗

T are obtained from the widely used, simple but realistic,
Dryden model (Poirel and Price, 2003a). The basic representation of the model is given in the
frequency domain. The spectral shape of the two turbulence components are different from
one another; however, the overall characteristics of the system are governed by the scale of
turbulence L∗ and intensity (given by the variance D∗1 and D

∗

2), which are common to both
components

Su∗
T
(ω) = 2D∗2

( 2L∗

πQ∗m

) 1

1 +
(

L∗ω
Q∗m

)2 Sw∗
T
(ω) = 2D∗1

( L∗

πQ∗m

) 1 + 3
(

L∗ω
Q∗m

)2

[

1 +
(

L∗ω
Q∗m

)2]2 (2.4)

The aero-elastic equations of motion are formed by combining Eq. (2.1) and Eq. (2.3), which
gives a set of two integro-differential equations.
Let x = [x1, x2, x3, x4, x5, x6, x7, x8] = [α, α̇, ξ, ξ̇, R1, Ṙ1, R2, Ṙ2], Eq. (2.1) can be expressed

as

ẋ1 = x2

ẋ2 = a21x1 + a22x2 + a23x3 + a24x4 + a25x5 + a26x6 + a27x7 + a28x8 + a29M(x1)

ẋ3 = x4

ẋ4 = a41x1 + a42x2 + a43x3 + a44x4 + a45x5 + a46x6 + a47x7 + a48x8 + a49M(x1)

ẋ5 = x6

ẋ6 = a61x1 + a62x2 + a63x3 + a64x4 + a65x5 + a66x6 + a67x7 + a68x8

ẋ7 = x8

ẋ8 = a81x1 + a82x2 + a83x3 + a84x4 + a85x5 + a86x6 + a87x7 + a88x8 +
wT
Qm

(2.5)

where

ξ =
h

b
Qm =

Q∗m
bωα

wT =
w∗T
bωα

Ri =
R∗i b
2

Q∗m
(i = 1, 2)

3. Solving the stationary probability density function by stochastic averaging

and a modified averaging method

Equations (2.5) can be expressed as ẋ = F(xi, Qm, τ). Let the inflow velocity Qm be a bifurcation
parameter, and Qm0 the bifurcation critical point. The Jacobian matrix at Qm0 can be obtained
for the deterministic system whose eigenvalues include a pair of pure imaginary roots and other
roots with negative real parts. Let Qm = Qm0 + µ, and µ be a perturbation near the Hopf
bifurcation point. Hence, the Jacobian matrix with respect to the perturbation can be expressed
as

A(µ) = A(0, µ, 0) =
∂F

∂x

∣

∣

∣

∣

∣

x=0
Qm=Qm0+µ
t=0

(3.1)

Expanding Eq. (3.1) at µ = 0 yields, A(µ) = A0 +DA(µ)|µ=0µ = A0 +A1µ. Hence, Eqs.
(2.5) can be rewritten as

ẋ = (A0 +A1µ)x+ [F(xi, Qm, t)− (A0 +A1µ)x] = A0x+ Fa(xi, µ) (3.2)
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where Fa(xi, µ) is a quadratic polynomial, and ẋ = A0x is the derived system. Let us assume
the solution of the derived system as

x = G(τ)b (3.3)

where G(τ) = TE(τ) is the fundamental matrix of T = [ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8],
E(τ) = diag (eλ1τ , eλ2τ , eλ3τ , eλ4τ , eλ5τ , eλ6τ , eλ7τ , eλ8τ ), λj is the eigenvalue of Jacobian ma-
trix, λ1, λ2 is the pair of pure imaginary numbers, and the other six(λ3, . . . , λ8) have negative
real parts, ϕj is the eigenvector corresponding to each eigenvalue. By applying the method of
variation of constants (Hao and Wu, 2018), substituting Eq. (3.3) into Eq. (3.2), we have

ḃ = G∗(τ)Fa(xi, µ)
∣

∣

∣

x

= G(τ)b = H(bi, µ, τ) = [H1,H2,H3,H4,H5,H6,H7,H8]
T (3.4)

where G∗(τ) is the inverse of the fundamental matrix G(τ). In order to derive the solution in a
more familiarized familiar form, we assume b as a function of τ

b1 = re
iθ b2 = re

−iθ bi = bi(τ) i = 3, . . . , 8 (3.5)

where r is the aero-elastic modal amplitude, θ is the generalized phase-angle.

Since we are only interested in long term behavior of the system when τ approaches to
infinity, bi = 0 (i = 3, . . . , 8). Therefore, we obtain the normal equation by substituting Eq.
(3.5) into Eq. (3.4)

ṙ = ε(H1 cos θ +H2 sin θ) = εΦ(r, θ, µ)

θ̇ =
ε(−H1 sin θ +H2 cos θ)

rj
= εΦ∗(r, θ, µ)

(3.6)

where

Φ(r, θ, µ) = [−2.3618 cos(0.3644τ − 2θ)− 2.5026 sin(0.3644τ − 2θ)

+ 0.0308 cos(0.7288τ − 4θ)− 1.5246 sin(0.7288τ − 4θ)

+ 0.1972 cos(1.0932τ − 6θ)− 0.2137 sin(1.0932τ − 6θ)− 2.2054]kα5r
5

+ [−0.3695 cos(0.3644τ − 2θ)− 0.5071 sin(0.3644τ − 2θ)

+ 0.0396 cos(0.7288τ − 4θ)− 0.1858 sin(0.7288τ − 4θ)− 0.4324]kα3r
3

+ µ{[−0.00015 cos(0.3644τ − 2θ)− 0.00166 sin(0.3644τ − 2θ)− 0.00097]µ2T (τ)

+ [−0.00239 cos(0.3644τ − 2θ)− 0.0111 sin(0.3644τ − 2θ)− 0.00737]µT (τ)

+ [0.00064 cos(0.3644τ − 2θ) + 0.01657 sin(0.3644τ − 2θ) + 0.03230]}

+ [0.0131 cos(0.1822τ − θ) + 0.0120 sin(0.1822τ − θ)]wT (τ)

Φ∗(r, θ, µ) = [−3.0071 cos(0.3644τ − 2θ)− 0.5017 sin(0.3644τ − 2θ)

− 1.3192 cos(0.7288τ − 4θ)− 0.5748 sin(0.7288τ − 4θ)

− 0.2137 cos(1.0932τ − 6θ)− 0.1972 sin(1.0932τ − 6θ)− 1.8948]kα5r
4

+ [−0.3715 − 0.1858 cos(0.7288τ − 4θ)− 0.0396 sin(0.7288τ − 4θ)

− 0.5731 cos(0.3644τ − 2θ)− 0.0048 sin(0.3644τ − 2θ)]kα3r
2

+ µ{[−0.00135 + 0.00015 sin(0.3644τ − 2θ)− 0.00166 cos(0.3644τ − 2θ)]u2T (τ)

+ [−0.00802 − 0.01107 cos(0.3644τ − 2θ) + 0.00239 sin(0.3644τ − 2θ)]uT (τ)}

+
1

r
[0.01201 cos(0.7622τ + θ)− 0.01307 sin(0.7622τ + θ)]wT (τ)
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The normal equation is in r and θ. By substituting G(τ) = TE(τ) and b into x = G(τ)b,
we have an expression of x, where (ϕ = 0.1822τ − θ)

x =











α
α̇
ξ

ξ̇











=











2.3859r cosϕ+ 0.6544r sinϕ
0.1192r cosϕ− 0.4347r sinϕ
1.5499r cosϕ− 0.1270r sinϕ
−0.0231r cosϕ− 0.2824r sinϕ











(3.7)

The stochastic average and deterministic average can be utilized in Eqs. (3.6), and we obtain
the following stochastic equations for the aero-elastic modal amplitude r and θ

dr =
[

−2.2054kα5r
5 − 0.4324kα3r

3 +
(3.876 · 10−4µ2SuT (ω1)

π
+ 0.0323µ

)

r

+
2.474 · 10−4SwT (ω1)

rπ

]

dt

+

√

3.7208 · 10−4SuT (ω1)

π
µ2r2 +

4.9481 · 10−4SwT (ω1)

π
dW1(t)

dθ = (−1.8948kα5r
4 − 0.3715kα3r

2 − 0.0028µ)dt

+

√

4.0375 · 10−4µ2SuT (ω1)

π
+
4.9481 · 10−4SwT (ω1)

r2π
dW2(t)

(3.8)

where W1(t) and W2(t) are two independent Winer processes. It is worth pointing out that ṙ
does not depend on θ, allowing us further to develop a probability density for r, rather than a
joint density for r and θ. The probability density p(r, τ) of the instantaneous aero-elastic modal
amplitude r satisfies the Fokker-Planck-Kolmogorov equation (Hao and Wu, 2018)

∂p(r, τ)

∂t
= −

∂

∂r

{[

−2.2054kα5r
5 − 0.4324kα3r

3

+
(3.876 · 10−4µ2SuT (ω1)

π
+ 0.0323µ

)

r +
2.474 · 10−4SwT (ω1)

rπ

]

p(r, t)
}

+
1

2

∂2

∂r2

[(3.7208 · 10−4SuT (ω1)

π
µ2r2 +

4.9481 · 10−4SwT (ω1)

π

)

p(r, t)
]

(3.9)

By solving the FPK equation, we obtain an analytical solution of the system stationary
probability density function

ps(r) = κR(r,D1,D2, L, kα3, kα5, µ) exp[Q(r,D1,D2, L, kα3, kα5, µ)] (3.10)

where κ is the normalization coefficient, Di = D∗i /(b
2ω2α), i = 1, 2, L = L∗/b, kα3 = Kα3/Kα,

kα5 = Kα5/Kα and

R(r,D1,D2, L, kα3, kα5, µ) = r
{

[3.4945 · 10−5µ2D2Lr
2(1 + 0.00178L2)

+ 2.3236 · 10−5D1L(1 + 0.005358L
2)]

1

(1 + 0.00178L2)2

}B(r,D1,D2,L,k3,k5,µ)
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B(D1,D2, L, kα3, kα5, µ) =
{

−
1

2
(1 + 0.00178L2)Lµ6D32

− 27902.50849kα5D
2
1(1 + 0.005358L

2)2

+ 8226.934kα3D1µ
2D2(1 + 0.005358L

2)(1 + 0.00178L2)

+ 28616.38737µ4D22[0.03230µ(1 + 0.00178L
2)

+ 3.64017 · 10−5µD2L(1 + 0.00178L
2)2]
} 1

(1 + 0.00178L2)D32Lµ
6

Q(r,D1,D2, L, kα3, kα5, µ) = {−3155.69066kα5D2(1 + 0.00178L
2)µ2r4

+ [−12372.86379kα3D2(1 + 0.00178L
2)µ2

+ 341963.86368kα5D1D2(1 + 0.005358L
2)]r2}

1

D22Lµ
4

The relations between α, α̇, ξ, ξ̇ and r, θ are defined in Eq. (3.7). Thus, we have analytical
expressions of ps(rα) and ps(rh), which are PDFs (probability density functions) of the pitch
angle and plunge displacement

ps(rα) = κR1(rα,D1,D2, L, kα3, kα5, µ) exp[Q1(rα,D1,D2, L, kα3, kα5, µ)]

ps(rξ) = κR2(rξ,D1,D2, L, kα3, kα5, µ) exp[Q2(rξ,D1,D2, L, kα3, kα5, µ)]
(3.11)

where

Q1(rα,D1,D2, L, kα3, kα5, µ) = {−84.2281kα5D2(1 + 0.00178L
2)µ2r4α

+ [−2021.3966kα3D2(1 + 0.00178L
2)µ2

+ 55867.79304kα5D1(1 + 0.005358L
2)]r2α}

1

D22Lµ
4

R1(rα,D1,D2, L, kα3, kα5, µ) = rα
{

[2.3076 · 10−6µ2D2Lr
2
α(1 + 0.00178L

2)

+ 9.3919 · 10−6D1L(1 + 0.005358L
2)]

1

(1 + 0.00178L2)2

}B(D1,D2,L,k3,k5,µ)

Q2(rξ,D1,D2, L, kα3, kα5, µ) = {−539.5858kα5D2(1 + 0.00178L
2)µ2r4ξ

+ [−5116.2679kα3D2(1 + 0.00178L
2)µ2

+ 1.41405 · 105kα5D1(1 + 0.005358L
2)]r2ξ}

1

D22Lµ
4

R2(rξ,D1,D2, L, kα3, kα5, µ) = rξ
{

[9.2921 · 10−6µ2D2Lr
2
ξ (1 + 0.00178L

2)

+ 1.4942 · 10−5D1L(1 + 0.005358L
2)]

1

(1 + 0.00178L2)2

}B(D1,D2,L,k3,k5,µ)

4. Bifurcation analysis of the deterministic system

In a non-dimensional form, the airfoil parameters used in the analysis, are taken from (Poirel
and Price, 2007), and kα3 = −0.3736, kα5 = 0.2197. The bifurcation of the deterministic system
is shown in Fig. 1. The horizontal axis represents the perturbation of Qm in the vicinity of
the bifurcation point and the vertical axis represents the aero-elastic modal amplitude r. The
dotted lines are unstable limit cycles while the solid line is the equilibrium and stable limit cycle.
Figure 1 demonstrates that the periodic solution produced by Hopf bifurcation has involved a
second bifurcation at µ = −0.417. The critical velocity of saddle node bifurcation points is
advanced. The bifurcation diagram shows discontinuous and unstable limit cycles, where the
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system appears to be multi-stable. The figure shows that the results solved from the first order
approximation via, respectively, the modified averaging method and the averaging method. Blue
stars shown in Fig. 1 are the numerical results by adopting the Rung-Kutta 4th order algorithm.
It is obvious that the numerical approaches nearly over-write the analytical methods (black line),
which validates the proposed solving approach. The modified averaging method gives accurate
results by making a dimension reduction process.

Fig. 1. Bifurcation diagram of the deterministic system

In Fig. 1 (Qm = Qm0 + µ), µ = 0 corresponds to QH = 4.3154, where QH = 4.3154 is the
Hopf bifurcation point, which is known as the first critical speed or the linear critical flow speed.
The nonlinear criticality arrives when µ = −0.417, which corresponds to QA = 3.8983, where the
second bifurcation (saddle-node bifurcation) occurs. Nevertheless, the nonlinear critical velocity
of the system for a large amplitude vibration LCO is smaller than the nonlinear critical velocity.

5. Application of the stochastic singularity theory and analysis of the parameter

influence

For this non-linear airfoil, we can analyze the system stationary response behavior by inve-
stigating the standard equations of aeroelastic modality amplitude r and angle θ. First, the
bifurcation equation of the 2DOF airfoil model is selected as

g(r) = R(r,D1,D2, L, kα3, kα5, µ) exp[Q(r,D1,D2, L, kα3, kα5, µ)]− ps(r) = 0 (5.1)

The transition set H (hysteresis set) and DL (double-limit point set) of the non-linear flutter
system corresponding to bifurcation equation (5.1) is solved by using the singularity theory.
Types of transfer sets and their calculation methods are the same as those in (Hao and Wu,
2013). Here, the aero-elastic modality amplitude r is a state variable; the stationary probability
density ps(r) is a bifurcation parameter; the perturbation µ of vertical and longitudinal turbulent
intensities D1 and D2 of the longitudinal inflow velocity Qm near the Hopf bifurcation point is
the unfolding parameter.
For L = 50, Fig. 2 shows the transition set profile in the (D1, µ) plane for several D2. Here,

the dotted line is the hysteresis set H, and the dot-and-dash line is a double limit point set DL.
The hysteresis set H and D1 = D2 = 0 correspond to the linear and nonlinear critical flow
speed (QH = 4.3154, QA = 3.8983) in Fig. 2. The transition set H and DL in the (D1, µ) in the
parameter plane divide the parameter plane into different parameter domains marked as 1a, 2,
3 and 1b.
Figure 3 shows the stationary PDF of the aero-elastic modal amplitude r found at points

selected in the parameter domains divided by the transition set curve. Here, the black curve is
the theoretical result, and the blue asterisked line is the result of Monte Carlo simulation. The
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Fig. 2. Critical conditions of P-bifurcation (transition sets) for two intensities of longitudinal turbulence

Rung-Kutta 4-th order algorithm has been adopted to acquire the time history of each sample,
so that after 10000 iterations the simulation could run into a steady state. We ran the Monte
Carlo simulation with a sample number set of 106. The two results agree well with each other
suggesting that our theoretical calculation is reliable. Also the time responses of α and α̇ are
shown in Fig. 3 corresponding to the same parameters.

As the perturbation µ to the longitudinal inflow velocity continues to increase, in the transi-
tion set profile (Fig. 2) the system undergoes three stochastic P-bifurcations. When µ increases
to 0, the longitudinal inflow velocity reaches the system linear critical velocity QH . In this case,
there will be only sharp airfoil flutter, and variation of the turbulent excitation intensity will
not cause any qualitative variation to the system stationary response.

The PDF of the aero-elastic modal amplitude r obtained from region 1 (in Fig. 2) of the
(D1, µ) parameter plane is shown in Fig. 3a(1a). No large amplitude vibration is observed in
this region, and the time responses of α and α̇ shown in Fig. 3d(1b) also verify the probabilistic
distribution.

Another peak occurs in the PDF curve when the parameter set passes through region 1a to
region 2 (in Fig. 2) of the(D1, µ) plane, as shown in Fig. 3b(2). The stochastic P-bifurcation has
happened and a large amplitude vibration can be found, but small vibration still exists. Time
domain results of α, α̇ are shown in Fig. 3b(right).

When the parameter set passes through region 2 to region 3 (in Fig. 2) of the (D1, µ)
plane, the second peak of the PDF curve begins to be higher than the first peak. This means
that region 3 corresponds mainly to the large amplitude vibration and the duration of small
amplitude vibration becomes short, Fig. 3c(right).

Further increase in the airspeed Qm causes the third stochastic P-bifurcation to occur, and
the PDF curves reduce to only one peak. The large amplitude vibration dominates the dynamics
in this case, as shown in Fig. 3d(1b) and Fig. 3d(right), and the system behaves like a diffused
limit cycle.

Comparing the two groups of transition set profiles presented above, we can find that as
the longitudinal turbulent intensity D2 increases, the transition set curve moves in the direction
where µ(Qm = Qm0 + µ) decreases. In the (D1, µ) parameter plane, as D2 continues to incre-
ase, parameter domain 1b also continues to enlarge. When the parameters are selected within
transition set parameter domain 1b, the airfoil continues to undergo sharp stochastic flutter.
An increase in the longitudinal turbulent intensity D2 increases the parameter range for sharp
airfoil flutter, thus compromising the system stationary response.
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Fig. 3. PDF profile (bifurcation diagram) of r and time history of α, α̇: (a) µ = −0.6, D1 = 0.8,
(b) µ = −0.4, D1 = 0.45, (c) µ = −0.38, D1 = 0.55, (d) µ = −0.1, D1 = 1
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With the increase of D1, the value µ of the parameter set corresponding to the left hysteresis
set H gradually decreases (Fig. 2). The crossing is the occurrence of stochastic P-bifurcation,
and the large amplitude vibration is observed at region 2, so it means that the critical velocity for
sharp airfoil flutter will gradually decrease too. Similar to what happens when the longitudinal
turbulent intensity increases, the critical velocity for sharp stochastic airfoil flutter comes earlier.
An increase in the longitudinal and vertical turbulent velocities D2 and D1 will both cause the
critical velocity for sharp stochastic airfoil flutter to come earlier.

Figure 4 shows the effects of the turblent scale L on the linear and nonlinear critical veloci-
ties QTH and QTA under turbulent perturbation when the vertical and longitudinal turbulent
velocities are constant. As the turbulent scale L increases, both QTH and QTA become smal-
ler, implying that an increase in the turbulent scale will cause the critical velocity for sharp
stochastic airfoil flutter to occur earlier.

Fig. 4. Influence of L on velocity when D1 = D2 = 1

Fig. 5. Variation of the critical velocity

For D1 6= 0, D2 = 1, Fig. 5 shows how the critical velocities QTH and QTA vary with D1
by different terms of turbulent scales L. When L = 5, the turbulent scale is small, and both
linear and nonlinear critical velocities QTH and QTA decrease slowly with the increase of vertical
turbulent intensity. Comparing the different curves in this chart, we will see that an increase
in L accelerates the QTH and decreases the QTA. At the same time the other parameters are
constant, whereas as increase in the turbulent scale decreases the critical velocity for sharp
stochastic airfoil flutter. An increase in both the turbulent scale L and vertical and longitudinal
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turbulent intensities D1 and D2 can makes the critical velocity for sharp stochastic airfoil flutter
come earlier.

6. Conclusions

The stochastic flutter and stochastic P-bifurcation of an airfoil in a two-dimensional turbulent
flow are examined. By addressing the potential effects of two-dimensional turbulence, the binary
airfoil model is expanded to eight dimensions, taking into account five-fold structural nonlinearity
and complexity of the aerodynamic model. A combination of the modified averaging method
with the stochastic averaging method reduces the difficulty of applying the stochastic averaging
method in high-dimensional systems, and is successfully applied to solve this high-dimensional
system.

Analysis of the stochastic singularity and discussion of the system stochastic P-bifurcation
discovered that in the linearly stable area with the presence of a two-dimensional flow, an increase
in the turbulent intensity leads to a reduction of the critical flutter velocity for sharp stochastic
airfoil flutter, and makes the time for sharp airfoil flutter come earlier. Moreover, when other
parameters are constant, the increase in the turbulent scale brings forward the critical velocity
for sharp stochastic flutter, and it accelerates the decreasing rate of the critical velocity.

Appendix

f1 =
1

a1c2 − a2c1
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1

a2c1 − a1c2
a21 = f1(a2c5 − a5c2) a22 = f1(a2c3 − a3c2) a23 = f1(a2c6 − a6c2)

a24 = f1(a2c4 − a4c2) a25 = f1(a2c9 − a9c2) a26 = f1(a2c7 − a7c2)

a27 = f1(a2c10 − a10c2) a28 = f1(a2c8 − a8c2) a29 = −f1c2

a41 = f2(a1c5 − a5c1) a42 = f2(a1c3 − a3c1) a43 = f2(a1c6 − a6c1)
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c1 = xα −
ah
u

c2 = 1 +
1

u
c3 =

U1
u
+
2
(

1
2 − ah

)

µ
U1ϕ(0)

c4 =
2ζhω

Qm
+
2

u
U1ϕ(0) c5 =
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U2ϕ(0) c6 =

ω2
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d1 = 0 d2 = 0 d3 = −
(1

2
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d4 = −1 d5 = −U1

d6 = 0 d7 = 1 d8 = b1 + b2 d9 = b1b2

ei = 0 (i = 1, . . . , 6) e7 = 1 e8 = b3 + b4 e9 = b3b4
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ϕ(0) = 1−A1 −A2 ψ(0) = 1−A3 −A4
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