PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Partial observability of finite dimensional linear systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we consider the partial observability problem for finite dimensional dynamical linear systems that are not necessarily observable. For that purpose we introduce the so called ”observable subspaces” and ”partial observability” to find a way to reconstruct the observable part of the system state. Some characterizations of ”observable subspaces” have been provided. The reconstruction of the orthogonal projection of the state on the observable subspace is obtained. We give some examples to illustrate our theoretical approach.
Rocznik
Strony
269--300
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • GAT Team, Faculty of Sciences and Techniques of Tangier, Morocco
  • GAT Team, Faculty of Sciences and Techniques of Tangier, Morocco
  • MMC Team, Faculty of Sciences and Techniques of Tangier, Morocco
Bibliografia
  • Aizerman, M. A. and Gantmacher, R. F. (1970) Absolute Stability of Regulator Systems. Society for Industrial and Applied Mathematics 12, I(1), 161-162.
  • Bellman, R. and Kalaba, R. (1964) Selected Papers on Mathematical Trends in Control Theory. Dover Publications, New York.
  • Ben-Israel, A. and Greville, T. N. E. (2003) Generalized Inverses: Theory and Applications. Springer Science & Business Media, New York.
  • Bichara, D., Cozic, N. and Iggir, A. (2012) On the estimation of sequestered parasite population in falciparum malaria patients. RR-8178, INRIA.
  • Bongiorno, J. J. (1964) Real frequency stability criteria for linear timevarying systems. Proc. IEEE 52 (7), 832-841.
  • Boukhobza, T., Hamelin, F., Martinez-Martinez, S. and Sauter-Cent, D. (2009) Structural Analysis of the Partial State and Input Observability for Structured Linear Systems: Application to Distributed Systems. The European Union Control Association 15 (5), 503-516.
  • Bridgeland, T. F. (1964) Stability of Linear Signal Transmissions Systems. SIAM Review 5 (1) 7-32.
  • Bryson, A. E. and Ho, Y. C.(1969) Applied Optimal Control: Optimization, Estimation, and Control. Waltham, MA: Blaisdell 481.
  • Gilbert, E. G. (1963) Controllability and Observability inMultivariable Control Systems. SIAM Journal for Control 1 (2), 128-151.
  • Ho, B. L. and Kalman, R. E. (1966) Effective Construction of Linear State-Variable Models from Input-Output Data. Automatisierungstechnik 14 (1-12), 545-548.
  • Kalman, R. E. (1962) Canonical Structure of Linear Dynamical Systems. National Academy of Sciences 48 (4), 596-600.
  • Kalman, R. E. (1963) Mathematical Description of Linear Dynamical Systems. Journal of the Society for Industrial and Applied Mathematics. Series A Control 1 (2), 152.
  • Kang, W. and Xu, L. (2009) A Quantitative Measure of Observability and Controllability. 48th IEEE Conference on Decision and Control, 6413-6418.
  • Lee, E. B. and Markus, L. (1967) Foundations of Optimal Control Theory. John Wiley, New York.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1aa68d36-e481-4921-84b0-d65e600fa940
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.