PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties investigations of the plasma sprayed coatings based on alumina powder

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania właściwości mechanicznych powłok natryskiwanych plazmowo na bazie proszku tlenku glinu
Języki publikacji
EN
Abstrakty
EN
In this paper Al2O3 + 13 wt% TiO2 ceramic coatings manufactured by Atmospheric Plasma Spraying (APS) have been investigated. The commercial feedstock materials, Metco 6221 (top coat) and Amdry 4535 (bond coat) have been deposited on stainless steel coupons. The main goal of researches was to determine the influence of critical plasma spray parameters (CPSP) on structure and properties of the coatings. In present studies, the electrical power was a variable parameter. Coatings have been characterized in the terms of microstructure, topography, bond strength adhesion, fracture toughness and wear resistance. As a result, it was observed, that coatings sprayed with higher value of the electrical power exhibit higher mechanical properties due to better cohesion as well as higher melting degree.
PL
W artykule zbadano powłoki ceramiczne Al2O3 + 13% wag. TiO2 wytwarzane przez atmosferyczne natryskiwanie plazmowe (APS). Handlowe materiały wsadowe, Meteo 6221 (warstwa wierzchnia) i Amdry 4535 (warstwa wiążąca) zostały osadzone na próbkach ze stali nierdzewnej. Głównym celem badań było określenie wpływu krytycznych parametrów natrysku plazmowego (CPSP) na strukturę i właściwości powłok. W obecnych badaniach moc elektryczna była zmiennym parametrem. Powłoki scharakteryzowano pod względem mikrostruktury, topografii, przyczepności siły wiązania, odporności na pękanie i odporności na zużycie. W rezultacie zaobserwowano, że powłoki natryskiwane wyższą wartością mocy elektrycznej wykazują wyższe właściwości mechaniczne ze względu na lepszą spójność, a także wyższy stopień topnienia.
Rocznik
Strony
17--23
Opis fizyczny
Bibliogr. 31 poz., il., tab.
Twórcy
autor
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland
Bibliografia
  • [1] Pawłowski L., The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley: Chichester, 2008, ISBN 978-0-471-49049-4.
  • [2] Maruszczyk A., Dudek A., Szala M., Research into Morphology and Properties of TiO2 - NiAl Atmospheric Plasma Sprayed Coating. Adv. Sci. Technol. Res. J., 2017, Vol. 11(3), 204-210. https://doi.org/10.12913/22998624/76450
  • [3] Góral A., Żórawski W., Charakterystyka mikrostruktury powłok Ni-Al2O3 natryskanych zimnym gazem. Welding Technology Review, 2015, Vol. 87(9), 34-37. https://doi.org/10.26628/wtr.v87i9.448
  • [4] Szala M., Hejwowski T., Cavitation Erosion Resistance and Wear Mechanism Model of Flame-Sprayed Al2O3-40%TiO2/NiMoAl Cermet Coatings. Coatings, 2018, Vol. 8(7), 254. https://doi.org/10.3390/coatings8070254
  • [5] Aliofkhazraei M., Anti-Abrasive Nanocoatings: Current and Future Applications, Elsevier, 2014, ISBN 978-0-85709-217-5.
  • [6] Sert Y., Toplan N., Tribological behavior of a plasma-sprayed Al2O3-TiO2-Cr2O3 coating. Materials and Technology, 2013, Vol. 47(2), 181-183.
  • [7] Wang Y.M., Tian H., Shen X.E., Wen L., Ouyang J.H., Zhou Y., Jia D.C., Guo L.X., An elevated temperature infrared emissivity ceramic coating formed on 2024 aluminium alloy by microarc oxidation. Ceramics International, 2013, Vol. 39(3), 2869-2875. https://doi.org/10.1016/j.ceramint.2012.09.060
  • [8] Wang M., Shaw L.L., Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina-titania coatings. Surface and Coatings Technology, 2007 Vol. 202(1), 34-44. https://doi.org/10.1016/j.surfcoat.2007.04.057
  • [9] Aruna S.T., Balaji N., Shedthi J., Grips V.K.W., Effect of critical plasma spray parameters on the microstructure, microhardness and wear and corrosion resistance of plasma sprayed alumina coatings. Surface and Coatings Technology, 2012, Vol. 208(15), 92-100. https://doi.org/10.1016/j.surfcoat.2012.08.016
  • [10] Ibrahim A., Hamdy A.S., Microstructure, Corrosion, and Fatigue Properties of Alumina-Titania Nanostructured Coatings. Journal of Surface Engineered Materials and Advanced Technology, 2011, Vol. 1(3), 101-106. DOI:10.4236/jsemat.2011.13015
  • [11] Geaman V., Pop M.A., Motoc D.L., Radomir I., Tribological properties of thermal spray coatings. European Scientific Journal, ESJ 2014, Vol. 9(10), 154-159. https://doi.org/10.19044/esj.2013.v9n10p%25p
  • [12] Yugeswaran S., Selvarajan V., Vijay M., Ananthapadmanabhan P.V., Sreekumar K.P., Influence of critical plasma spraying parameter (CPSP) on plasma sprayed Alumina-Titania composite coatings. Ceramics International, 2010, Vol. 36(1), 141-149. https://doi.org/10.1016/j.ceramint.2009.07.012
  • [13] Michalak M., Łatka L., Sokołowski P., Porównanie właściwości mechanicznych powłok natryskiwanych plazmowo proszkowo i z zawiesin. Welding Technology Review, 2017, Vol. 89(10), 56-60. https://doi.org/10.26628/wtr.v89i10.819
  • [14] Chantikul P., Anstis G.R., Lawn B.R., Marshall D.B., A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method. Journal of the American Ceramic Society, 1981, Vol. 64(9), 539-543. https://doi.org/10.1111/j.1151-2916.1981.tb10321.x
  • [15] Lancaster J.K., The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear, 1967, Vol. 10(2), 103-117. DOI:10.1016/0043-1648(67)90082-8.
  • [16] Vijay M., Selvarajan V., Yugeswaran S., Ananthapadmanabhan P.V., Sreekumar K.P., Effect of Spraying Parameters on Deposition Efficiency and Wear Behavior of Plasma Sprayed Alumina-Titania Composite Coatings. Plasma Sci. Technol., 2009, Vol. 11(6), 666-673. DOI: 10.1088/1009-0630/11/6/07
  • [17] Djendel M., Allaoui O., Boubaaya R., Characterization of Alumina-Titania Coatings Produced by Atmospheric Plasma Spraying on 304 SS Steel. Acta Physica Polonica A, 2017, Vol. 132(3), 538-540. doi:10.12693/APhysPolA.132.538.
  • [18] Jafarzadeh K., Valefi Z., Ghavidel B., The effect of plasma spray parameters on the cavitation erosion of Al2O3-TiO2 coatings. Surface and Coatings Technology, 2010, Vol. 205(7), 1850-1855. https://doi.org/10.1016/j.surfcoat.2010.08.044
  • [19] Wahab J.A., Ghazali M.J., Baharin A.F.S., Microstructure and mechanical properties of plasma sprayed Al2O3 - 13%TiO2 Ceramic Coating. MATEC Web Conf. 2017, 87, 02027. doi:10.1051/matecconf/20178702027
  • [20] Yılmaz R., Kurt A.O., Demir A., Tatlı Z., Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating. Journal of the European Ceramic Society, 2007, Vol. 27(2-3), 1319-1323. https://doi.org/10.1016/j.jeurceramsoc.2006.04.099
  • [21] Łatka L., Niemiec A., Michalak M., Sokołowski P., Tribological properties of Al2O3+ TiO2 coatings manufactured by plasma spraying. Tribology, 2019,Vol. 283(1), 19-24. doi:10.5604/01.3001.0013.1431
  • [22] Zhang J., He J., Dong Y., Li X., Yan D., Microstructure and properties of Al2O3-13%TiO2 coatings sprayed using nanostructured powders. Rare Metals, 2007, Vol. 26(4), 391-397. https://doi.org/10.1016/S1001-0521(07)60234-4
  • [23] Jordan E.H., Gell M., Sohn Y.H., Goberman D., Shaw L., Jiang S., Wang M., Xiao T.D., Wang Y., Strutt P., Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties. Materials Science and Engineering: A, 2001, Vol. 301(1), 80-89. https://doi.org/10.1016/S0921-5093(00)01382-4
  • [24] Ghazali M.J., Forghani S.M., Hassanuddin N., Muchtar A., Daud A.R., Comparative wear study of plasma sprayed TiO2 and Al2O3–TiO2 on mild steels. Tribology International, 2016, Vol. 93, B, 681-686. https://doi.org/10.1016/j.triboint.2015.05.001
  • [25] Łatka L., Michalak M., Jonda E., Atmospheric Plasma Spraying of Al2O3 + 13% TiO2 Coatings Using External and Internal Injection System. Advances in Materials Science, 2019, Vol. 19(4), 5-17. https://doi.org/10.2478/adms-2019-0018
  • [26] Żórawski W., Góral A., Makrenek M., Zimowski S., Tribological properties of plasma sprayed Al2O3-13TiO2 nanostructured coatings. Tribologia, 2017, 2, 157-165.
  • [27] Çelik İ., Structure and surface properties of Al2O3-TiO2 ceramic coated AZ31 magnesium alloy. Ceramics International, 2016, Vol. 42(12), 13659-13663. https://doi.org/10.1016/j.ceramint.2016.05.162
  • [28] Mehar S., Sapate S.G., Vashishtha N., Bagde P., Effect of Y2O3 addition on tribological properties of plasma sprayed Al2O3-13% TiO2 coating. Ceramics International, 2020, Vol. 46(8), B, 11799-11810. https://doi.org/10.1016/j.ceramint.2020.01.214
  • [29] Normand B., Fervel V., Coddet C., Nikitine V., Tribological properties of plasma sprayed alumina-titania coatings: role and control of the microstructure. Surface and Coatings Technology, 2000, Vol. 123(2-3), 278-287. https://doi.org/10.1016/S0257-8972(99)00532-0
  • [30] Wang Y., Jiang S., Wang M., Wang S., Xiao T.D., Strutt P.R., Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear, 2000, Vol. 237(2), 176-185. https://doi.org/10.1016/S0043-1648(99)00323-3
  • [31] Rigney D.A., Division A.S. for M.M.S., AIME, M.S. of Fundamentals of friction and wear of materials: papers presented at the 1980 ASM Materials Science Seminar, 4-5 October 1980, Pittsburgh, Pennsylvania, American Society for Metals, 1981, ISBN 978-0-87170-115-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1aa193ed-49f4-4eed-95eb-35c52fdd526a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.