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Abstract: In this paper Al2O3 + 13 wt% TiO2 ceramic coatings manufactured by Atmospheric Plasma 

Spraying (APS) have been investigated. The commercial feedstock materials, Metco 6221 (top coat) and 

Amdry 4535 (bond coat) have been deposited on stainless steel coupons. The main goal of researches was 

to determine the influence of critical plasma spray parameters (CPSP) on structure and properties of the 

coatings. In present studies, the electrical power was a variable parameter. Coatings have been 

characterized in the terms of microstructure, topography, bond strength adhesion, fracture toughness and 

wear resistance. As a result, it was observed, that coatings sprayed with higher value of the electrical power 

exhibit higher mechanical properties due to better cohesion as well as higher melting degree. 
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Introduction 
Thermal spraying technologies are commonly used in order to improve the surfaces of the machine 

elements. Among many methods, Atmospheric Plasma Spraying (APS) is one of the most widely used. Many 

types of metals, cermet and ceramics are used as a feedstock material [1,2]. In this group one  

of the most frequently used are Al2O3 and TiO2. Powders which have agglomerated and sintered morphology 

are very interesting from an application point of view [3,4]. Coatings based on pure alumina are used when 

the wear resistance and corrosion against chemical agents is required [5]. The addition of TiO2 decreases the 

melting temperature of such compound, which results in lower porosity of manufactured coatings. These 

coatings are also characterized by higher fracture toughness, in comparison to pure alumina ones [6]. 

Generally, the most frequent mixtures are as follow: Al2O3 + 3 wt% TiO2, Al2O3 + 13 wt% TiO2  

and Al2O3 + 40 wt% TiO2 [1,7]. Applications of such coatings is very wide, include e.g. paper and textile 

industry, automotive and aviation branches and many others [8,9]. Coatings based on Al2O3 + 13 wt% TiO2 

show the best properties, such as: good wear resistance, low value of the friction coefficient, relatively high 

hardness and low porosity [10,11]. 

In the paper the influence of the critical plasma spray parameters (CPSP) [12] on microstructure  

and mechanical properties of the sprayed coatings was described. 

Materials and Methods  
The feedstock material, which was used in the researches, was commercially available powder Metco 

6221 (Oerlikon Metco, Germany) with chemical composition Al2O3 + 13 wt% TiO2. The powder particles had 

a spherical morphology and were produced in agglomerated and sintered form. The diameter  

of the particles was in the range – 45 + 15 microns. The measured main volume to surface diameter (dVS) was 

equal to 33 µm. 

In order to improve adhesion of the ceramic coatings to the substrate, the bond coat was used. The 

feedstock material was a metallic powder of the mixture nickel and chromium (Ni + 20 wt% Cr). It was also  

a commercially available powder Amdry 4535 (Oerlikon Metco, Germany). This powder has a spherical 

morphology and the diameter of the particles was in the range – 53 + 11 microns. 

Coatings deposition have been realized with use of the plasma torch, SG-100 (Praxair, IN, USA), which 

was mounted on the arm of the industrial robot Fanuc 2000IA. Plasma gases mixture was composed of argon 
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and hydrogen. Argon was also used as a transport medium. The bond coat has been manufactured with 

parameters collected in table I. 

Table I. Parameters of the bond coat spraying process 

Spray distance, mm 100 

Linear torch velocity, mm/s 400 

Electrical power, kW 28 

Powder feed rate, g/min 15 

Plasma gases feed rate, SLPM 1 Ar = 45, H2 = 5 

Transport gas feed rate, SLPM Ar = 3 

1 Standard litter per minute 

Ceramic coatings have been sprayed with the assumption of variable values of the CPSP, calculated  

according to the formula: 

CPSP = Pel/fppg, (1) 

where: 

Pel – electrical power, kW; 

fppg – feed rate of the primary plasma gas, SLPM 

The process parameters of the ceramic coatings manufacturing, including sample code, are collected  

in table II. 

Table II. Sample code and parameters of the ceramic coating spraying process 

Sample  

code 

Electrical  

power,  

kW 

CPSP 1  

value 

Spray  

distance,   

mm 

Linear  

torch velocity,  

mm/s 

Powder  

feed rate, 

g/min 

P-622 28 622 

90 

  

P-689 31 689 250 18 

P-756 34 756   

1 Calculated from eq. (1) 

Feed rates of the plasma gases, as well as transport one were the same for ceramic coatings and for bond 

coat.  

Substrates were a cylinder shape with 25 mm in the diameter, 2 mm in the thickness and were made 

from austenitic stainless steel (X5CrNi18-10). Before spraying, the substrate surfaces were sand-blasted with 

corundum F40 (according to the FEPA standard) and then cleaned in the ethanol. The powders  

for bond coat and ceramic coating were fed radially. 

Coatings topography and microstructure have been characterized using scanning electron microscope 

Phenom G2 Pro (Phenom World, Eindhoven, Netherlands). Based on the micrographs of the cross sections 

the coatings thickness and porosity were estimated. The thickness was calculated as an average value from 

10 measurements in random localization. The porosity was estimated according to the ASTM E2109-01 

standard using ImageJ software for digital image analysis. It was made based on 20 micrographs. 

Coatings microhardness has been measured using Vickers penetrator with maximum load equal  

to 0.98 N (HV0.1) with microhardness tester HV-1000 (Sinowon, China). The measurements were carried out 

in accordance to the EN ISO 4516:2004 standard. On the coating’s cross section 10 imprints were made for 

each sample. 

The bond strength of the coatings was defined in accordance to the EN ISO 14916:2017-05 standard. In 

order to prepare the samples for this test, the cold cured glue, Distal Classic (Libella, Warsaw, Poland) was 

used. The average strength of the glue is equal to 50 MPa. 

Fracture toughness has been estimated in accordance to the EN ISO 14577-4:2017-02 standard, based on 

the methodology described in [13]. For calculations of the critical stress intensity factor (KC)  

the Anstis formula [14] was used: 

KC = 0.016 · (E/H)1/2 · (P/c1.5), (2) 

where: 

E – elastic modulus, MPa 
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H – Vickers hardness, MPa 

P – maximum loading of the indenter, N 

c – total cracking length, m 

Wear resistance of the sprayed coatings has been defined in accordance to the ASTM G99 standard  

in the ball on disc method. The T-01 device (ITeE-PIB, Radom, Poland) was used. As a counter-body,  

the steel ball (100Cr6) with diameter equal to 6 mm was used. The sliding distance was equal to 500 m,  

the linear velocity was equal to 0.1 m/s. The loading of the ball was equal to 10 N and the radius of the sliding 

was equal to 5 mm. The wear rate (KV) was calculated from wear formula of Lancaster [15]: 

KV = Vwear/FN · S, (3) 

where: 

Vwear – volume lost, mm3 

FN – normal load, N 

S – sliding distance, m 

Results and discussion 
The morphology and microstructure of the sprayed coatings are shown in figure 1 and figure 2 

respectively. The surface topography revealed that with the increased electrical power, the coatings were 

characterized by better melting of powder particles. Additionally, more regular splats, typical for this 

spraying method, were observed. The absence or very small amount of cracks suggests that the thermal 

stresses reached a low level, and thus resulted from the selection of parameters (apart from the electrical 

power, the distance of spraying and torch scan speed were especially important). A similar coatings’ 

topography can be seen in [16]. 

   
(a) (b) (c) 

Fig. 1. SEM micrographs of coatings topography: a) P-622, b) P-689, c) P-756 

   
(a) (b) (c) 

Fig. 2. SEM micrographs of coatings cross-section: a) P-622, b) P-689, c) P-756 
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Microstructures of coatings, observed for samples’ cross-sections, revealed that all the coatings had  

a characteristic lamellar structure, with micropores and single cracks. A homogeneous structure was 

observed. Similar one was reported in the literature [17÷19]. The coatings were well bonded to bond coat 

layer, additionally the continuity was observed also at the interface between bond coat and substrate.  

The thickness of the ceramic coating was about 380 µm, while the bond coat – about 30 µm. 

Investigations of coatings microstructures (Fig. 2) showed the differences in porosity. As the electrical 

power increased, the porosity decreased. It was caused by more intensive heat, which allowed to melt  

the powder more effectively. The average porosity values of coatings are given in table III. The porosity level 

is similar to those reported in [18,20]. The small values of standard deviation in obtained results, indicate a 

compact and homogeneous structure. In the case of microhardness (Tab. III), it was noted that  

the lower the porosity, the higher the hardness of the coatings. In this case, the electrical power again was of 

great importance, as it allowed for better melting of powder, which subsequently formed a dense coating 

with well-fitting lamellas. The microhardness values are typical for this material and manufacturing method 

[12,19]. 

Table III. Average values of porosity, microhardness, fracture toughness and adhesion of the sprayed coatings 

Sample  

code 

Porosity, 

vol. % 

Microhardness, 

HV0.1 

Fracture 

toughness, MPa · 

m1/2 

Adhesion bond 

strength, MPa 

P-622 8.9 ± 0.7 925 ± 93 3.74 ± 0.25 17.4 ± 2.8 

P-689 6.7 ± 0.5 977 ± 85 3.53 ± 0.21 20.3 ± 3.4 

P-756 5.2 ± 0.5 1048 ± 89 3.27 ± 0.24 24.6 ± 3.9 

When analyzing the values of fracture toughness (Tab. III) and microhardness, an inversely 

proportional relationship was observed. Harder coatings, as suspected, were of lower facture toughness. 

Values of Kc may be different, depending on the adopted estimation model (more than 20 can be found in 

the literature), as well as the Vickers' indenter loading [18,21]. The values of Kc collected in table III are 

similar, which suggests that the process parameters did not affect Kc. 

The adhesion of coatings determined according to the standardized pull-off test showed a clear 

dependence on the electrical power. The use of a bond coat layer has improved adhesion. Without a Ni-Cr 

coating, the adhesion of the Al2O3+TiO2 layer reached a maximum of 14 MPa. As showed in table III, these 

values are higher up to several dozen %. Similar values were achieved in works [22,23]. The obtained fracture 

revealed mixed topography, with a significant proportion of adhesive one (over 80%). 

The values of the volumetric wear coefficients of the tested coatings are shown in figure 3. A clear  

tendency to improve wear resistance with the increased electric power of the plasma arc was observed.  

This results in better melting of powder particles and a more compact structure. The similar intensity  

of wear were reported in [24,25]. The values of friction coefficients were around 0.58 and no dependence  

on process parameters was noticed. 

 

 
Fig. 3. Average intensity of wear of sprayed coatings 

Figure 4 shows exemplary wear trace of the sprayed coating. Non-homogeneous surface with ploughing 

was observed. Some particles, that were not well bonded, were easily removed from the surface of  

the coating. However, some of them remained between the ball and the coating and were pressed into wear 

trace (plastic deformation) [26]. Moreover, numerous micro-scratches at various depths were observed.  

The worn surface was uneven, which indicated that parts of the coating were pulled out during the test. The 
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predominant mechanism of wear was adhesive wear, which is consistent with the observations of other 

authors [27,28]. 

 
Fig. 4. Example of wear trace in the P-756 coating 

Wear resistance of coatings was related both to their basic mechanical properties such as microhardness 

and fracture toughness, as well as with the microstructure, adhesion and porosity of the coatings [29,30]. The 

experimental relationship between wear intensity and mechanical properties (hardness and fracture 

toughness) was proposed in [31]. Figure 5 shows the results of the abovementioned relationship in the 

reference to the coatings investigated in this article. It was observed that, when taking porosity into account, 

this relationship has an even higher value of the correlation coefficient R2. 

 
Fig. 5. Relationship between mechanical properties and intensity of wear of the deposited coatings  

Conclusions 
In the article Al2O3 + 13 wt% TiO2 coatings were manufactured by APS method on the stainless steel 

substrates with Ni + 20 wt% Cr bond coat. The microstructure and morphology were characterized,  

also porosity, fracture toughness as well as adhesion strength were examined. Additional microhardness 

measurements and intensity of wear resistance were carried out. The research provided the following 

conclusions: 

• CPSP critical process parameters (in this article the influence of the electrical power of the plasma jet 

was examined) have a significant impact on the mechanical properties of the manufactured coatings; 

• no differences in coatings morphology and microstructure were observed, except the porosity value and 

slightly differences in the amount of unmolten powder particles (direct observation of the surface 

topography with SEM); 

• greater amount of melted powder particles results in better cohesion in the coating and consequently 

better wear resistance. 
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The future studies will focus on the influence of the plasma enthalpy (mainly type and flow rate of  

the plasma gases) on microstructure and mechanical properties of manufactured coatings. 
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