Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In presented article the polymer-modified cement mortars with expanded graphite covered by the oligomer film, being a by-product of phenol electro-oxidation, were investigated. The changes in the morphology of EG and EG/oligomer as well as in the microstructure of cement-polymer composites modified with EG/oligomer were verified using the scanning electron microscopy (SEM). The evaluation of adhesion between EG/oligomer and cement-polymer mortar based on the mechanical tests, especially their flexural behavior. It was shown that the oligomer film formed on EG surface made graphite flakes more durable and resistant to bending. Moreover, the oligomer due to the interaction with polymer network in cement-polymer mortar led to the improvement of flexural toughness of composite.
Czasopismo
Rocznik
Tom
Strony
5--8
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Poznan University of Technology, Faculty of Civil and Environmental Engineering, Piotrowo 5, 60-965 Poznań, Poland
autor
- Poznan University of Technology, Faculty of Chemical Technology, Berdychowo 4, 60-965 Poznań, Poland
Bibliografia
- 1. Iotov, P.I. & Kalcheva, S.V. (1998). Mechanistic approach to the oxidation of phenol at a platinum/gold electrode in an acid medium. J. Electroanal. Chem. 442, 19–26. DOI: 10.1016/S0022-0728(97)00455-5.
- 2. Martínez-Huitle, C.A. & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324–1340. DOI: 10.1039/B517632H.
- 3. Skowroński, J.M. & Krawczyk, P. (2004). Electrooxidation of phenol at exfoliated graphite electrode in alkaline solution. J. Solid State Electrochem. 8, 442–447. DOI: 10.1007/s10008-003-0483-8.
- 4. Krawczyk, P. & Skowroński, J.M. (2010). Modification of expanded graphite resulting inenhancement of electrochemical activity in the process of phenol oxidation. J. Appl. Electrochem. 40, 91–98. DOI: 10.1007/s10800-009-9984-1.
- 5. Boudenne, J.L., Cerclier, O., Galéa, J. & Bianco, P. (1998). Voltammetric studies of the behavior of carbon black during phenol oxidation on Ti/Pt electrodes. J. Electrochem. Soc. 145, 2763–2768. DOI: 10.1149/1.1838711.
- 6. Feng, Y.J. & Li, X.Y. (2003). Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Wat. Res. 37, 2399–2407. DOI: 10.1016/S0043-1354(03)00026-5.
- 7. Skowroński, J.M. & Krawczyk, P. (2009). Enhanced electrochemical activity of regenerated expanded graphite electrode after exhaustion in the process of phenol oxidation. Chem. Eng. J. 152, 464–470. DOI: 10.1016/j.cej.2009.05.009.
- 8. Krawczyk, P. & Skowroński, J.M. (2012). Electrochemical reactivation of expanded graphite electrodes covered by oligomeric products of phenol electrooxidation. Electrochim. Acta 79, 202–209. DOI: 10.1016/j.electacta.2012.06.106.
- 9. Ohama, Y. (1997). Recent progress in concrete-polymer composites, Adv. Cem. Bas. Mat. 5, 31–40.
- 10. Ohama, Y. (1998). Polymer-based admixtures, Cem. Concr. Res. 20, 189–212.
- 11. Ślosarczyk, A. (2013). Cement composites modified with selected carbon materials, LAP LAMBERT Academic Publishing, Saarbrücken, Germany.
- 12. Ślosarczyk, A. & Skowroński, J.M. (2009). Carbon spheres as possible micro-reinforcement of cement-based composites. Brittle Matrix Composites, Proceedings of the 9 International Symposium, Cambridge-Warsaw.
- 13. Krawczyk, P., Ślosarczyk, A. (2009). Ekspandowany grafit po elektrochemicznym utlenianiu fenolu jako dodatek do zapraw cementowych. Przem. Chem. 6, 828–833, in polish.
- 14. Ślosarczyk, A. & Krawczyk, P. (2015). Influence of expanded graphite Surface ozonation on the adhesion between carbon additive and cement matrix. Mater. Sci. MEDZG, 21, 298–302. DOI:10.5755/j01.mm.21.2.5860.
- 15. Krawczyk, P. & Skowroński, J.M. (2010). Modification of Expanded Graphite Electrodes by Ozone Treatment. Acta Phys Pol A. 118, 465–470.
- 16. Tahar, N.B. & Savall, A. (2009) Electropolymerization of phenol on a vitreous carbon electrode in alkaline aqueous solution at different temperatures. Electrochim. Acta 55, 465–469. DOI: 10.1016/j.electacta.2009.08.040.
- 17. Gattrell, M. & Kirk, D.W. (1993). A study of electrode passivation during aqueous phenol electrolysis. J. Electrochem. Soc. 140, 903–911. DOI: 10.1149/1.2056225J.
- 18. Sundaram, S. & Annamalai, S.K. (2012). Selective immobilization of hydroquinone on carbon nanotube modified electrode via phenol electro-oxidation method and its hydrazine electro-catalysis and Escherichia coli antibacterial activity. Electrochim. Acta 62, 207–217. DOI: 10.1016/j.electacta.2011.12.044.
- 19. Chung, D.D.L. (2004). Use of polymers for cement-based structural materials. J. Mat. Sci. 39, 2973–2978. DOI: 10.1023/B:JMSC.0000025822.72755.70.
- 20. Jenni, A., Holzer, L., Zurbriggen, R. & Herwegh, M. (2005). Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars. Cem. Conc. Res. 35, 35–50. DOI: 10.1016/j.cemconres.2004.06.039.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a9fb20e-f6a4-4304-a1db-bbf2ec9c7405