PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibility of increasing vehicle energy balance using coasting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with coasting as an option of using the vehicle kinetic energy. It highlights the need for changes in the legislation in conjunction with the use of new trends in the management of motor vehicles with regard to safety. The article describes the use of the vehicle is coasting as a part of the driving mode, which leads to the reduction in fuel consumption and in exhaust emission. This solution takes into account all the running resistances and creates a basis for designing appropriate control strategies. These options were analyzed with respect to various drive strategies and kinds of transport.
Słowa kluczowe
Twórcy
  • University of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Zilina, Slovak Republic
  • University of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Zilina, Slovak Republic
  • University of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Zilina, Slovak Republic
  • University of Zilina, Faculty of Operation and Economics of Transport and Communications, Univerzitna 1, 010 26, Zilina, Slovak Republic
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Barta D., Mruzek M., Kendra M., Kordos P. and Krzywonos L. Using of nonconventional fuels in hybrid vehicle drives. Advances in science and technology research, 10(32), 2016, 240–247.
  • 2. Barta D. and Mruzek M. Factors influencing the hybrid drive of urban public transport buses. Man-agement systems in production engineering, 4(20), 2015, 213–218.
  • 3. Brown A., Nalbach M., Kahnt S., and Korner A. CO2 Emissions Reduction via 48V Active Engine- Off Coasting. SAE International Journal of Alternative Powertrains, 5(1), 2016, 68–78.
  • 4. Chengqun Q. and Guolin W. New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles. Energy Conversion and Management, 119, 2016, 389–398.
  • 5. Dizo J. and Blatnicky M. Use of multibody system dynamics as a tool for rail vehicle behaviour diag-nostics. Diagnostyka, 17(2), 2016, 9–16.
  • 6. Evans L. Driver behaviour effects on fuel consumption in urban driving. Hum. Factors, 21, 1979, 389–398.
  • 7. Frilli A., Meli E., Nocciolini D. and Pugi L. Energetic optimization of regenerative braking for high speed railway systems. Energy Conversion and Management, 129(11), 2016, 200–215.
  • 8. Grandone M., Naddeo M., Marra D. and Rizzo G. Development of a regenerative braking control strategy for hybridized solar vehicle. IFAC-PapersOnLine, 49, 2016, 497–504.
  • 9. Hajek H., Popiv D., Just M. and Bengler K. Influence of a multimodal assistance supporting antici-patory driving on the driving behavior and driver’s acceptance. Human Centered Design, HCII 2011, LNCS 6776, 2011, 217–226.
  • 10. Hui S., Lifu Y., Junqing J., et al. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles. Energy Convers Manage, 1(52), 2011, 668–674.
  • 11. Hutchins E. L., Hollan J.D. and Norman D. A. Direct manipulation interfaces: User Centered System Design. Human-computer interaction, 1, 1985, 311–338.
  • 12. Ko J., Ko S., Son H., Yoo B., Cheon J.and Kim, H. Development of brake system and regenerative braking cooperative control algorithm for automatic-transmission-based hybrid electric vehicles. IEEE Trans Veh Technol, 2(64), 2015, 431–440.
  • 13. Li L., Li X., Wang X., Song J., He K. and Li C. Analysis of downshift’s improvement to energy ef-ficiency of an electric vehicle during regenerative braking. Appl Energy, 176, 2016, 125–137.
  • 14. Liang L. et al. AMT downshifting strategy design of HEV during regenerative braking process for energy conservation. Applied Energy, 11, 2016, 914–925.
  • 15. Makaras R., Sapragonas J., Keršys A., Pukalskas S. Dynamic model of a vehicle moving in the urban area, Transport. 26(1), 2011, 35–42.
  • 16. Marczuk A., Misztal W., Słowik T., Piekarski W., Bojanowska M. and Jackowska I. Chemical determinants of the use of recycled vehicle components. Przemysł Chemiczny. 94(10), 2015, 1867–1871.
  • 17. McIlroy R. C. and Stanton N. A. A decision ladder analysis of eco-driving: the first step towards fuel-efficient driving behaviour, Ergonomics, 58(6), 2015, 51–17.
  • 18. McIlroy R. C. and Stanton N. A. Encouraging Eco-driving with Multi-sensory Information. Procedia Manufacturing, 3, 2015, 2474–2481.
  • 19. Mruzek M., Gajdac I., Kucera L., Barta D. Analysis of Parameters Influencing Electric Vehicle Range. Procedia Engineering, 134, 2016, 165–174.
  • 20. Oleksowicz, S., Burnham, K., Southgate, A., McCoy, C., Waite, G., Hardwick, G., et al.: Regenerative braking strategies, vehicle safety and stability control systems: critical use-case proposals. In. Veh Syst Dyn, 5(51), 2013, 684–699.
  • 21. Rimkus A., Melaika M., Pukalskas S. and Nagurnas S. Research of hydrogen influence for gas bus ecological and economic parameters. Proc. Technologija of 16th international conference Transport Means 2012, Kaunas, Lithuania 2012, 13–16.
  • 22. Shakouri P., Ordys A., Darnell P. and Kavanagh P. Fuel Efficiency by Coasting in the Vehicle, 2013, 2013, 14.
  • 23. Siemionek E. and Dziubiński M. Testing energy consumption in the trolleybus and the bus on a chosen public transport line in Lublin. Advances in Science and Technology Research Journal, 9(26), 2015, 152–153.
  • 24. Skrucany T. and Gnap J. The effect of the crosswinds on the stability of the moving vehicles. Applied Mechanics and Materials, 617, 2014, 296–301.
  • 25. Skrucany T., Gnap J. Energy intensity and GHG production of the road and rail cargo transport using a software to simulate the energy consumption of a train. Proc. of the conference Telematics – support of transport, Katowice/Kraków/Ustroń, Poland, Berlin: Springer-Verlag, 2014, 263–272.
  • 26. Sovran G. and Blaser D. Quantifying the potential impacts of regenerative braking on a vehicle’s trac-tive-fuel consumption for the U.S., European, and Japanese driving schedules. SAE technical paper 2006–01–0664, 2006.
  • 27. Voort M., Dougherty M. S. and Maarseveen M. A prototype fuel-efficiency support tool. Transport Research Part C, 9, 2001, 279–296.
  • 28. White R. and Korst H.: The determination of vehicle drag contributions from coast-down tests (No. 720099). SAE Technical Paper. 1972.
  • 29. Zhang J., Lv C., Gou J., et al. Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car. Proc. Inst Mech Eng, Part D: J Automob Eng, 10(226), 2012, 1289–1302.
  • 30. Zhang J., Lv C., Qiu M., et al. Braking energy regeneration control of a fuel cell hybrid electric bus. Energy Convers Manage, 76, 2013, 1117–1124.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a9defe3-76a3-4817-b7d6-0d9809b192a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.