PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antibiotics in the Environment as one of the Barriers to Sustainable Development

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Antybiotyki w środowisku jako jedna z barier dla zrównoważonego rozwoju
Języki publikacji
EN
Abstrakty
EN
The paper has analyzed the presence of antibiotics in crude (hospital, medicine production and municipal) waste water, treated waste water, surface water and drinking water across the world. The concentrations of antibiotics in medicine production waste water reached a level of up to 900 µ/dm3; in hospital waste water, up to 124 µ/dm3; and in municipal waste water, up to 64 µ/dm3. Antibiotic concentrations in treated waste water approached 260 ng/dm3. The presence of antibiotics in surface water has also been covered. The most often identified medicines were: Ciprofloxacin, Erythromycin, Norfloxacin, Sulfamethoxazole and Trimethoprim. The maximum antibiotic concentrations in surface water are as high as up to 2 µg/dm3. In the majority of cases, identified antibiotics occurred in concentrations from several to several dozen ng/dm3, and less often in several hundred ng/dm3. The presence of antibiotics in drinking water, similarly as for waste water, was identified worldwide, e.g. in China, USA, Germany, Canada, France. Very high antibiotic concentrations were noted in Guangzhou, China, which reached a level of up to 679.7 ng/dm3 (Ciprofloxacin), but also in the USA (Triclosan) – 734 ng/dm3). In the majority of instances, antibiotics are present in water in much lower concentrations. The consequence of environmental contamination with antibiotics is the drug resistance of many bacterial strains with the resultant deaths of 25 000 people in the European Union and 700 000 people across the globe. The other effects of the presence of antibiotics in the natural environment are not fully understood yet. For example, carcinogenic, teratogenic or mutagenic effects are attributed to these contaminants.
PL
W pracy przeanalizowano obecność antybiotyków w ściekach surowych (szpitalnych, z produkcji leków, komunalnych), oczyszczonych, wodach powierzchniowych i wodzie pitnej na świecie. Stężenia antybiotyków analizowane w ściekach z produkcji leków dochodziły do 900 µ/dm3, w ściekach szpitalnych do 124 µ/dm3 i komunalnych do 64 µ/dm3. Stężenia antybiotyków w ściekach oczyszczonych dochodziły do 260 ng/dm3. Przedstawiono również obecność antybiotyków w wodach powierzchniowych. Najczęściej identyfikowanymi lekami były: ciprofloxacin, erytromycyna, norfloxacin, sulfamethoxazole i trimethoprim. Maksymalne stężenia antybiotyków w wodach powierzchniowych dochodzą nawet do 2 µg/dm3. W większości przypadkach identyfikowane antybiotyki występowały w ilości od kilku do kilkudziesięciu ng/dm3, rzadziej w ilości kilkuset ng/dm3. Obecność antybiotyków w wodzie pitnej jest identyfikowana, podobnie jak w przypadku ścieków na całym świecie np. w Chinach, USA, Niemczech, Kanadzie, Francji. Odnotowano bardzo wysokie stężenia antybiotyków Chinach w Guangzhou dochodzące do 679,7 ng/dm3 (ciprofloxacin ), ale również w USA (triclosan – 734 ng/dm3). W większości przypadków antybiotyki w wodach są w znacznie niższych stężeniach. Konsekwencją zanieczyszczenia środowiska antybiotykami jest lekooporność wielu szczepów bakterii i w konsekwencji coroczna śmierć 25 000 osób w Unii Europejskiej i około 700000 na całej kuli ziemskiej. Nie do końca poznane są inne skutki obecności antybiotyków w środowisku. Przypisuje się temu zanieczyszczeniu właściwości rakotwórcze, teratogenne lub mutagenne.
Czasopismo
Rocznik
Strony
197--207
Opis fizyczny
Bibliogr. 88 poz., tab.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa, Poland
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa, Poland
  • Czestochowa University of Technology, Faculty of Management, Ul. Armii Krajowej 19b, 42-201 Częstochowa, Poland
Bibliografia
  • 1. ADAMEK E., et al., 2015, Efektywność procesów biodegradacji zastosowanych do usuwania leków przeciwbakteryjnych ze ścieków i wody rzecznej, in: Proceedings of ECOpole, vol. 9, no. 1, p. 155-162.
  • 2. AHMAD M. et al., 2012, Role of hospital effluents in the contribution of antibiotics and antibiotic resistant bacteria to the aquatic environment, in: Pak. J. Nutr., vol.11, no. 12, p. 1177-1182.
  • 3. ASHFAQ M. et al., 2016, Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan, in: Environ. Toxicol. Pharmacol., vol. 42, p. 6-22.
  • 4. BARBUSIŃSKI K., NALEWAJEK T., 2011, Oporność szczepów Escherichia coli na wybrane antybiotyki w ściekach komunalnych, in: Gaz, Woda i Technika Sanitarna, vol. 11, p. 442-446.
  • 5. BBOSA G.S., MWEBAZA N., ODDA J., et al., 2014, Antibiotics/antibacterial drug use, their marketing and promotion during the post-antibiotic golden age and their role in emergence of bacterial resistance, in: Health (Irvine Calif), vol. 6, p. 410-425.
  • 6. BIELAS S., LACH J., 2014, Zanieczyszczenie środowiska wodnego antybiotykami, in: Technologia Wody, vol. 3, no. 35, p. 23-29.
  • 7. BIELIŃSKA M., NAŁĘCZ-JAWECKI G., 2009, Zanieczyszczenie środowiska przyrodniczego lekami. Ocena toksyczności trzech fluorochinolonów dla rzęsy drobnej Lemna Minor, in: Biul. Wydz. Farm. WUM, vol. 4, no. 24-30.
  • 8. BIERNASIAK J., ŚLIŻEWSKA K., LIBUDZISZ Z., 2010, Negatywne skutki stosowania antybiotyków, in: Postępy Nauk Rolniczych, vol. 3, p. 105-117.
  • 9. BROWN K.D. et al., 2006, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, in: Sci Total Environ., vol. 366, p. 772-783.
  • 10. BRUTON L.L., LAZO J.S., PARKER K.L. 2007, Farmakologia Goodmana & Gilmana, Wydawnictwo Czelej, Lublin.
  • 11. BULL R.J. et al., 2011, Therapeutic dose as the point of departure in assessing potential health hazards from drugs in drinking water and recycled municipal wastewater, in: Regul. Toxicol. Pharmacol., vol. 60, np. 1, p. 1-19.
  • 12. CALZA P. et al. 2013, Fate of Selected Pharmaceuticals in River Waters, in: Environ. Sci. Pollut. Res. Int. Vol. 20, no. 4, 2262-2270.
  • 13. CARMOSINI, N., LEE, L.S., 2009. Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials, in: Chemosphere, vol. 77, no. 6, p. 813-820.
  • 14. CARVALHO I.T. SANTOS C.L., 2016, Antibiotics in the aquatic environments: A review of the European scenario, in: Environ. Int., vol. 94, p. 736-757.
  • 15. CHANG X. et. al. 2010, Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China, in: Environ. Pollut., vol.158, no. 5, p. 1444-1450.
  • 16. DEO R.P., HALDEN R.U., 2013, Pharmaceuticals in the Built and Natural Water Environment of the United States, in: Water, vol. 5, no.3, p. 1346-1365.
  • 17. DAVIES J., DAVIES D., 2010, Origins and evolution of antibiotic resistance, in:. Mol. Biol. Rev. vol. 74, p. 417-433.
  • 18. DAVIES J., DAVIES D., 2010, Origins and evolution of antibiotic resistance, in: Mol. Biol. Review, vol. 74, p. 413-433.
  • 19. DUONG H.A. et al., 2008, Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam, in: Chemosphere, vol.72, no. 6, p. 968-973.
  • 20. ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals, 2015, in: EFSA J., vol. 13, p. 4006-4114.
  • 21. FENT K., WESTON A.A., CAMINADA D., 2006, Ecotoxicology of human pharmaceuticals, in: Aquatic Toxicology, vol. 76, no. 2, p. 122-159.
  • 22. FRENCH, G.L., 2010. The continuing crisis in antibiotic resistance, in: Int. J. Antimicrob. Agents., vol. 36, no. 3, p. 3-7.
  • 23. GAFFNEY V.D.J. et al., 2014, Occurrence of pharmaceuticals in a water supply system and related human health risk assessment, in: Water Res., vol. 72, p. 199-210.
  • 24. GOLOVKO O. et al., 2014, Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant, in: Chemosphere, vol. 111, p. 418-426.
  • 25. GRACIA-LOR E. et al., 2012, Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia, in: Chemosphere, vol.87, no. 5, p. 453-462.
  • 26. GRENNI P., ANCONA V., CARACCIOLO A.B., 2017, Ecological effects of antibiotics on natural ecosystems: A review, in: Microchemical Journal.
  • 27. GROSS, M., 2013, Antibiotics in crisis, in: Curr. Biol., vol. 23, p. R1063-R1065.
  • 28. GUERRA P. et al., 2014, Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes, in: Sci Total Environ., vol. 473-474, p. 235-243.
  • 29. HALLING-SORENSEN B. et al., 1998, Occurrence, fate, and effects of pharmaceutical substances in the environment – a review, in: Chemosphere, vol. 36, no. 2, p. 357-393.
  • 30. HEBERER T., 2002, Occurrence, fate, and removal of pharmaceuticals residues in the aquatic environment: a review of recent research data, in: Toxicol. Lett., vol. 131, p. 5-17.
  • 31. JANIEC W., 2005, Kompendium farmakologii, Wydawnictwo Lekarskie PZWL, Warsaw.
  • 32. JIA A., WAN Y., XIAO Y., HU J., 2012, Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant, in: Water Res., vol.46 no.2, p. 387-394.
  • 33. JANIEC R., CEGIEŁA U., FOLWARCZNA J., 2010, Kompendium Farmakologii, Wydawnictwo Lekarskie PZWL.
  • 34. JONES O.A., LESTER J.N., VOULVOULIS N., 2005, Pharmaceuticals: a threat to drinking water? in: Trends Biotechnol., vol. 23, p. 163-167.
  • 35. KASPRZYK-HORDERN B., DINSDALE R.M., GUWY A.J., 2009, The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters, in: Water Res. Vol. 43, no. 2, p. 363-380.
  • 36. KEMPER N., 2008, Veterinary antibiotics in the aquatic and terrestrial environment, in: Ecol. Indic., no. 8, p. 1-13.
  • 37. KLEYWEGT S. et al., 2011, Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada--occurrence and treatment efficiency, in: Sci. Total Environ., vol. 409, no. 8, p. 1481-1488.
  • 38. KOLPIN D.W. et al., 2002, Pharmaceuticals, hormones, and others organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance, in: Environ. Sci. Technol., vol. 36, p. 1202-1211.
  • 39. KÜMMERER K., 2009, Antibiotics in the aquatic environment – A review – Part I, in: Chemosphere, vo. 75, p. 417-434.
  • 40. LARSSON D.G.J., DE PEDRO C., PAXEUS N., 2007. Effluent from drug manufactures contains extremely high levels of pharmaceuticals, in: J. Hazard. Mater, vol. 148, no. 3, p. 751-755.
  • 41. LA TORRE A., et al., 2012,  An approach for mapping the vulnerability of European Union Soils to Antibiotic Contamination, in: Science of the Total Environment, 414, p. 672-679.
  • 42. LI X., WATANABE N. et al., 2013, Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California, in: Environ Monit Assess., vol. 186, p. 1253-1260.
  • 43. LI W.C., 2014. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, in: Environ. Pollut., vol. 187, p. 193-201.
  • 44. LI W., SHI Y., GAO L., LIU J., CAI Y., 2013, Occurrence and removal of antibiotics in amunicipal wastewater reclamation plant in Beijing, China, in: Chemosphere, vol. 92, no. 435-444.
  • 45. LIEWSKA K., BIERNASIAK J., LIBUDZISZ Z., 2006, Probiotyki jako alternatywa dla antybiotyków, in: Zeszyty Naukowych Politechniki Łódzkiej, z. 70, nr 984, p. 79-91.
  • 46. LINDBERG R. et al., 2004, Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards, in: Chemosphere, vol. 57, no. 10, p. 1479-1488.
  • 47. LOCATELLI M.A., SODRE F.F., JARDIM W.F., 2011, Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry, in: Arch Environ Contam Toxicol., vol. 60, no. 3, p. 385-393.
  • 48. LOOS R., WOLLGAST J., HUBER T., HANKE G., 2007, Polar Herbicides, Pharmaceutical Products, Perfluorooctanesulfonate (PFOS), Perfluorooctanoate (PFOA), and Nonylphenol and Its Carboxylates and Ethoxylates in Surface and Tap Waters Around Lake Maggiore in Northern Italy, in: Anal. Bioanal. Chem., vol. 387, np. 4., p. 1469-1478.
  • 49. LORAINE G, PETTIGROVE M., 2006, Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California, in: Environ. Sci. Technol., vol. 40, p. 687-695.
  • 50. MADUREIRA V.T., BARREIRO J.C., ROCHA M.J., ROCHA E., 2010, Spatiotemporal distribution of pharmaceuticals in the Douro River estuary (Portugal), in: Sci. Total Environ., vol. 408, no. 22, p. 5513-5520.
  • 51. MANAGAKI S. et al., 2007, Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta, in: Environ Sci Technol.,vol. 41, p. 8004-8010.
  • 52. MARTÍNEZ J.L., 2009, Environmental pollution by antibiotics and by antibiotic resistance determinants, in: Environ. Pollut., vol. 157, p. 2893-2902.
  • 53. MED-EUWI, 2007, Mediterranean wastewater reuse report.
  • 54. MICHAEL I. et al. 2013, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, in: Water Res., vol. 47, p. 957-995.
  • 55. MOMPELAT S., LE BOT B., THOMAS O., 2009, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, in: Environ. Int., vol. 35, p. 803-814;
  • 56. MURATA A., TAKADA H., MUTOH K., HOSODA H., 2011, Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers, in: Sci. Total Environ., vol. 409, no. 24., p. 5305-5312.
  • 57. OECD, 2015, Antimicrobial resistance in G7 countries and beyond: Economic issues, policies and options for action, OECD Paris.
  • 58. NÖDLER K., LICHA T., FISCHER S., WAGNER B., 2011, A case study on the correlation of micro-contaminants and potassium in the Leine River (Germany), in: Applied Geochemistry, vol. 26, no. 12, p. 2172-2180.
  • 59. O'NEILL J., 2014, Tackling a crisis for the health and wealth of nations, in: Antimicrobial Resistance, http://amr-review.org/Publications, (01.06.2017).
  • 60. OSEK J., WIECZOREK K., 2015, Spożycie leków przeciwbakteryjnych w Europie i występowanie oporności na te leki bakterii izolowanych od ludzi, zwierząt i z żywności w 2012 r., in: Życie Weterynaryjne, vol. 90, no. 9, p. 601-603.
  • 61. PADHYE L.P., YAO H., KUNG'U F.T., HUANG C.H., 2014, Year-long evaluation on the occurrence and fate of pharmaceuticals personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant, in: Water Res., vol. 51, p. 266-276.
  • 62. REEMTSMA T., JEKEL M., 2006, Organic pollutants in the water cycle, WILEY-VCH, Weinheim.
  • 63. SANTOSA L.H. et al., 2010, Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, in: J. Hazard. Mater. vol. 175, no. 45-95.
  • 64. SOKÓŁ A., 2013, Badania szybkości degradacji wybranych leków w układach modelowych i w próbkach wód rzecznych, Uniwersytet Białostocki.
  • 65. STEC M., 2015, Antibiotics in aquaculture, in: Słupskie Prace Biologiczne, no. 12 p. 209-216.
  • 66. SUKUL P, SPITELLER M., 2006, Sulfonamides in the environment as veterinary drugs, in: Rev Environ Contm Toxicol., vol. 187, p. 67-101.
  • 67. TAMTAM F., MERCIER F., LE BOT B., EURIN J., 2008, Occurrence and fate of antibiotics in the Seine River in various hydrological conditions, in: Science of The Total Environment, vol. 393, no. 1, p. 84-95.
  • 68. TERNES T., 1998, Occurrence of drugs in German sewage treatment plants and rivers, in: Water Research, vol. 32, p. 3245-3260.
  • 69. TERNES T., 2001, Analytical methods for the determination of pharmaceuticals in aqueous environmental samples, in: Trends in Analytical Chemistry, vol. 20, p. 419-433.
  • 70. VERGEYNST L. et al., 2015. Multiresidue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry: Method quality assessment and application in a Belgian case study, in: Chemosphere vol. 119, p. S2-S8.
  • 71. VERLICCHI P. et al., 2012, Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment, in: Sci. Total Environ., vol. 430, p. 109-118.
  • 72. VERLICCHI P., AL AUKIDY M., ZAMBELLO E., 2012, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review, in: Sci. Total Envirom., vol. 429, p. 123-155.
  • 73. VIENO N.M., TUHKANEN T., KRONBERG L., 2006, Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography–tandem mass spectrometry detection, in: J. Chromatogr. A., vol. 1134, p. 101-111.
  • 74. WANG C.A. et al., 2011, Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry, in: Water Res. vol. 45, p. 1818-1828.
  • 75. WATKINSON J., MURBY E., COSTANZO S., 2007, Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling, in: Water Res., vol. 41, p. 4164-4176.
  • 76. WATKINSON J., MURBY E.J., KOLPIN D.W., COSTANZO S.D., 2009, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, in: Sci. Total Environ., vol. 407, no. 8, p. 2711-2723.
  • 77. WEI Y. et al. 2014, Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography-tandem mass spectrometry in: Front. Environ. Sci. Eng., vol. 8 no. 3, p. 357-371.
  • 78. WHO, 2014, Antimicrobial resistance: Global report on surveillance, WHO Geneva.
  • 79. WOLLENBERGER L., HALLING-SØRENSEN B., KUSK K.O., 2000, Acute and chronic toxicity of veterinary antibiotics to Daphnia magna, in: Chemosphere, vol. 40, p. 723-730.
  • 80. WU M. et al., 2016, Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water, in: Ecotoxicol. Environ. Safety, vol. 132, p. 132-139.
  • 81. Ye Z.Q., WEINBERG H.S., MEYER M.T., 2007, Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry, in: Anal. Chem., vol. 79, no. 3, p. 1135-1144.
  • 82. YIRUHAN et al., 2010, Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao, Environ. Pollut., vol. 158, p. 2350-2358.
  • 83. YU F., LI Y., HAN S, MA J., 2016, Adsorptive removal of antibiotics from aqueous solution using carbon materials, in: Chemosphere, vol. 153, p. 365-385.
  • 84. ZHAO S. et al., 2016, Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China, in: Sci. Total Environ., vol. 569–570, p.1350-1358.
  • 85. ZHOU L.J. et al., 2011, Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China, in: Environmental Pollution., vol. 159, no.7, p. 1877-1885.
  • 86. ZHENG Q. et al., 2012, Occurrence and distribution of antibiotics in the Beibu Gulf, China: impacts of river discharge and aquaculture activities, in: Marine Environmental Research, vol. 78, p. 26-33.
  • 87. ZUCCATO E. et al., 2006, Pharmaceuticals in the Environment in Italy: Causes, Occurrence, Effects and Control, in: Environ Sci & Pollut Res., vol. 13, no.1, 15-21.
  • 88. ŻABICKA D., LITERACKA E., BOJARSKA K., 2012, MDR, XDR, PDR – jednolite, międzynarodowe definicje nabytej oporności drobnoustrojów na antybiotyki, in: Aktualności NPOA, vol. 3, p. 1-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a9a2f02-e394-4049-939c-69c4d561fe7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.