PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Variable Parameters of Horizontal Continuous Casting on the Structure of AlCu4MgSi Alloy Ingots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents results of research on the influence of variable parameters of horizontal continuous casting on the structure of AlCu4MgSi (EN AW-2017A) alloy ingots. The special character of the process allows for a continuous change of some of its parameters, namely, of the casting speed and of the rate of the cooling fluid flow thorough the crystallizer. These parameters have a significant impact on the crystallization process of the liquid metal. Depending on the cooling rate, intensity of the convection inside the solidifying alloy, and its chemical composition, there may arise some differences in the structure of the cast. In this study, ingots obtained at different casting speeds have been analyzed. The research methodology, based on light microscopy and electron microscopy (SEM), as well as energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), allowed for a thorough examination of the structure of the studied materials. The results were shown that an increase in the ingot casting speed leads to an increase in the average grain surface area.
Rocznik
Strony
196--202
Opis fizyczny
Bibliogr. 21 poz., fot., tab., wykr.
Twórcy
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
autor
  • Silesian University of Technology, Department of Foundry Engineering, Gliwice, Poland
Bibliografia
  • [1] Kvačkaj, T., Bidulskỳ, R. (ed.). (2011). Aluminium Alloys, Theory and Applications. Rijeka: InTech.
  • [2] Zaki, A. (ed.). (2012). Aluminium Alloys – New Trends in Fabrication and Applications. Rijeka: InTech.
  • [3] Dobrzański, L.A., Macek, M., Tomiczek, B., Nuckowski, P.M., Nowak, A.J. (2016). The influence of the dispersion method on the microstructure and properties of MWCNTs/AA6061 composites. Archives of Metallurgy and Materials. 61(2), 1229-1234.
  • [4] Szklarska-Smialowska, Z. (1999). Pitting corrosion of aluminium. Corrosion Science. 41, 1743-1767.
  • [5] Polmear, I., St. John, D., Nie, J-F., Qian, M. (2017). Light Alloys (fifth ed.). Cambridge: Elsevier Ltd.
  • [6] Wróbel, T., Szajnar, J., Bartocha, D., Stawarz, M. (2017). Primary Structure and Mechanical Properties of AlSi2 Alloy Continuous Ingots. Archives of Foundry Engineering. 17(2), 145-150.
  • [7] Szajnar, J., Wróbel, T., Bartocha, D., Stawarz M. (2016). Inoculation of Al-Si alloys using the electromagnetic stirring method. Transactions of Foundry Research Institute. 56(2), 67-75 (in Polish)
  • [8] Wróbel, T., Szajnar, J. (2013). Horizontal continuous casting of Al and Al-Si Alloy in semi-industrial conditions. In 22nd International Conference on Metallurgy and Materials: METAL 2013, 15-17 May 2013 (pp. 1177-1182). Brno, Czech Republic: Tanger Ltd.
  • [9] Schrewe, H. F. (1991). Continuous Casting of Steel, Fundamental Principles and Practice. Dusseldorf: Stahl und Eisen.
  • [10] Sebzda, W., Szajnar, J. (2013). Technological parameters influence on continuous cast grey iron. In 22nd International Conference on Metallurgy and Materials: METAL 2013, 15-17 May 2013 (pp. 178-184). Brno, Czech Republic: Tanger Ltd.
  • [11] Szajnar, J., Walasek, A., Baron, C. (2013). The description of the mechanism for the alloy layer forming process based on the experimental examination. In 22nd International Conference on Metallurgy and Materials: METAL 2013, 15-17 May 2013 (pp. 134-139). Brno, Czech Republic: Tanger Ltd.
  • [12] Yan, Z., Jin, W., Li, T. (2012). Effect of rotating magnetic field (RMF) on segregation of solute elements in CuNi10Fe1Mn alloy hollow billet. Journal of Materials Engineering and Performance. 21(9), 1970-1977.
  • [13] Li, X., Guo, Z., Zhao, X., Wie, B., Chen, F., Li, T. (2007). Continuous casting of copper tube billets under rotating electromagnetic field. Materials Science & Engineering A. 460-461, 648-651
  • [14] Okayasu, M., Wu, S., Tanimoto, T., Takeuchi, S. (2016). Mechanical Properties of Magnesium AlloysbProduced by the Heated Mold Continuous Casting Process. Archives of Foundry Engineering. 16(4), 208-216.
  • [15] Grajcar, A., Kwaśny, W., Zalecki, W. (2015). Microstructure-property relationships in TRIP aided medium-C bainitic steel with lamellar retained austenite. Materials Science and Technology. 31(7), 781-794.
  • [16] Dobrzański, L.A., Maniara, R., Sokolowski, J. (2006). Kinetics of crystallization and structure of AC AlSi7Cu4 foundry alloy. Archives of Foundry. 6(21), 125-132 (in Polish).
  • [17] Fraś, E. (2003). Crystallization of metals. Warszawa: WNT. (in Polish).
  • [18] Chakrabarti, D.J., Laughlin, D.E. (2004). Phase relations and precipitation in Al-Mg-Si alloys with Cu additions. Progress in Materials Science. 49, 389-410.
  • [19] Wierzbicka, B. (1998). Crystallization of Al-Cu alloys during the rapid cooling process. Solidification of Metals and Alloys. 38, 143-150.
  • [20] Riontino, G., Zanada, A. (1998). Coupled formation of hardening particles on pre-precipitates in an Al–Cu–Mg–Si 2014 alloy. Materials Letters. 37(4-5), (241-245).
  • [21] Totten, G. E., MacKenzie, D. S. (ed.) (2003). Handbook of Aluminum. Volume 1: Physical Metallurgy and Processes. New York: Marcel Dekker Inc.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a95da75-50b5-4366-bb73-4e4118963a40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.