PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of alternative characteristics of the vicinity of the ventilation district on air quantity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Subnetwork with two nodes shared with entire ventilation network can be separated as its part. For the network under common ventilation conditions, one of these nodes will become the subnetwork starting node, while the other will be the subnetwork end node. According to the graphs theory, such a piece of the network can be considered as a subgraph of the graph representing the entire ventilation network. A special feature of that subgraph is lack of predecessors of the subnetwork starting node and lack of successors of the subnetwork end node. Ventilation district of a mine may be often treated as a subnetwork. Vicinity is a part of the network which is not separated as subnetwork. In the case of a ventilation district its vicinity forces air flow through the district. The alternative characteristic curve of the vicinity can therefore be compared to the characteristics curve of a fictional fan that forces the airflow in the district. The alternative characteristics (later in the text: the characteristics) of the vicinity of the ventilation district in an underground mine strongly influence air quantity and therefore play a crucial role in the reduction of methane, fire and thermal hazards. The role of these characteristics and proper selection of their approximating function were presented in the article. The reduction of resistance of an intake stopping (having influence on entire resistance of a ventilation district) produces increased airflow in the district. This changes of airflow in the district caused by a variation in internal resistance (e.g. by opening an internal regulation stopping) depends on the characteristic of the vicinity of the district. Proper selection of its approximating function is also important for this matter. The methods of determination of the alternative characteristic curve of the district vicinity are presented. From these procedures it was possible to obtain the results of air quantities and differences in isentropic potentials between an inlet and an outlet to/from the ventilation district. Following this, the characteristics were determined by graphic and analytic methods. It was proved that, in contrast to flat vicinity characteristics, steep ones have a smaller influence on the airflow modification in the district (which are caused by a regulation of the district resistance). The characteristic curve of the vicinity determines the ability to regulate air quantity and velocity in the district.
Rocznik
Strony
47--58
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, 2 Akademicka Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] Bystoń H., 1956. Sposób kreślenia kanonicznych schematów przewietrzania. Przegląd Górniczy 3, 86-100.
  • [2] Bystroń H., 1999. Potencjały aerodynamiczne oraz wyznaczanie ich pól w sieciach wentylacyjnych, podsieciach i rejonach. Archives of Mining Sciences 44 (1), 23-69.
  • [3] Cheng G., Qi M., Zhang J., Wang W., Cheng Y., 2012. Analysis of the Stability of the Ventilation System in Baishan Coalmine. Procedia Engineering 45, 311-316. https://doi.org/10.1016/j.proeng.2012.08.163.
  • [4] Drenda J., Sułkowski J., Pach G., Różański Z., Wrona P., 2016. Two stage assessment of thermal hazard in an underground mine. Archives of Mining Sciences 61, 2, 309-322. DOI: https://doi.org/10.1515/amsc-2016-0023.
  • [5] Drenda J., Domagała L., Musioł D., Pach G., Różański Z., 2018. An analysis of selected jet fans used in chambers of KGHM mines with respect to the air stream range. Tunnelling and Underground Space Technology 82, 303-314. https://doi.org/10.1016/j.tust.2018.08.033.
  • [6] Dziurzyński W., Krach A., Pałka T., 2017. Airflow Sensitivity Assessment Based on Underground Mine Ventilation Systems Modeling. Energies 10 (10), 1451.
  • [7] Gillies A.D.S., Wu H.W., Tuffs N., Sartor T., 2004. Development of real time airflow monitoring and control system. Proceedings of the 10th US / North American Mine Ventilation Symposium, Mine Ventilation, Ganguli&Bandopadhyay, Taylor&Francis Group, London 2004. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.610.2435&rep=rep1&type=PDF.
  • [8] Hartman H.L., Mutmansky J., Ramani R., Wang Y.J., 1997. Mine Ventilation and Air Conditioning. 3rd Edition. New York: John Wiley & Sons.
  • [9] Hudeček V., Urban P., Zapletal P., Košňovský V., 2013. Elimination of safety risks at mined Coal faces in the paskov mine, Staříč plant – OKD, a.s. Czech Republic. Acta Montanistica Slovaca 18, 3, 172-179. http://actamont.tuke.sk/pdf/2013/n3/5hudecek.pdf.
  • [10] Jeswiet J., Szekeres A., 2016. Energy Consumption in Mining Comminution. The 23nd CIRP Conference on Life Cycle Engineering. Elsevier, Procedia CIRP 48, 201, 140-145, 2016. doi.org/10.1016/j.procir.2016.03.250.
  • [11] Knechtel J., 2011. Thermal hazard prevention in longwalls run under extreme geothermal conditions. Archives of Mining Sciences 56, 2, 265-280. http://archiwum.img-pan.krakow.pl/index.php/AMS/article/view/306/310.
  • [12] Kolarczyk M., Oleksy M., Pach G., 2005. Substitute characteristics of surrounding sub-networks for mining departments in ventilation networks of collieries. Zeszyty Naukowe Politechniki Śląskiej, seria Górnictwo 270, 265-276.
  • [13] Kolarczyk M., Oleksy M., Pach G., 2006. Rozwinięcie charakterystyki zastępczej części kopalnianej sieci wentylacyjnej według wzoru Taylora. Zeszyty Naukowe Politechniki Śląskiej, seria Górnictwo i Geologia 1, 4, 51-65.
  • [14] Kolarczyk M., 1993. Wpływ struktury kopalnianej sieci wentylacyjnej na wrażliwości prądów powietrza przy zmianach oporów bocznic. Zeszyty Naukowe Politechniki Śląskiej, z. 214, Gliwice.
  • [15] Kolarczyk M., 2008. The analogy between the conditions concerning airflow outputs sensitivity signs to changes in the resistance of side branches and H. Czeczott’s conditions concerning the flow direction in a simple diagonal network. Archives of Mining Sciences 53, 2, 270-292. http://archiwum.img-pan.krakow.pl/index.php/AMS/article/view/539/550.
  • [16] Koptoń H., Wierzbiński K., 2014. The Balance of Methane and Ventilation as a Tool for Methane Hazard Assessment in the Areas of Longwalls Exploited in Hard Coal Mines. Journal of Sustainable Mining 13, 4, 40-46. DOI.org/10.7424/jsm140308.
  • [17] Krach A., 2014. Determining Diagonal Branches in Mine Ventilation Networks. Archives of Mining Sciences 59, 4, 1097-1105. DOI: https://doi.org/10.2478/amsc-2014-0076.
  • [18] Krause E., Smoliński A., 2013. Analysis and Assessment of Parameters Shaping Methane Hazard in Longwall Areas. Journal of Sustainable Mining 12, 1, 13-19 DOI.org/10.7424/jsm130104.
  • [19] Liu H., Wu X., Mao S., Li M., Yue J., 2017. A Time Varying Ventilation and Dust Control Strategy Based on the Temporospatial Characteristics of Dust Dispersion. Minerals 7 (4) 59. doi:10.3390/min7040059.
  • [20] Luo W., Xie X., Xiao H., Cui C., Yin X., Su M., Wang T., Li J., Tan X., 2014. Reliabilty calculation of mine ventilation network. Procedia Engineering 84, 752-757. https://doi.org/10.1016/j.proeng.2014.10.492.
  • [21] Madeja-Strumińska B., Strumiński A., 2004. Optymalizacja wymuszonych rozpływów powietrza w warunkach skrępowanych oraz ocena wybranych zagrożeń w kopalniach podziemnych. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław. http://www.dbc.wroc.pl/dlibra/plain-content?id=1006.
  • [22] McPherson M., 1993. Subsurface Ventilation and Environmental Engineering, part two chapter 7 – Ventilation network analysis. Publisher Springer Netherlands, 209-240.
  • [23] Nguyen X.T., Nguyen T.T., Tran D.K., 2009. Some problems on the research and development of the application of methane draining boring technology to prevent hazards in underground coal mines in Vietnam. Journal of Coal Science & Engineering. 15, 2, 129-133. https://doi.org/10.1007/s12404-009-0203-9.
  • [24] Semin M., Levin L., 2019. Stability of air flows in mine ventilation networks. Process Safety and Environmental Protection 124, 167-171.
  • [25] Szlązak N., Kubaczka C., 2012. Impact of coal output concentration on methane emission to longwall faces/Wpływ koncentracji wydobycia na wydzielanie metanu do wyrobisk ścianowych. Archives of Mining Science 57, 1, 3-21. DOI: https://doi.org/10.2478/v10267-012-0001-x.
  • [26] Szlązak N., Obracaj D., Borowski M., Swolkień J., Korzec M., 2013. Monitoring and controlling methane hazard in excavation in hard coal mines. AGH Journal of Mining and Geoengineering 37, 1, 105-116.DOI: http://dx.doi.org/10.7494/mining.2013.37.1.105.
  • [27] Szlązak N., Obracaj D., Korzec M., 2017. Analysis of connecting a forcing fan to a multiple fan ventilation network of a real-life mine. Process Safety and Environmental Protection 107, 468-479.
  • [28] Szlązak N., Obracaj D., Swolkień J., 2018a. Sposób postępowania przy projektowaniu eksploatacji pokładów węgla w warunkach zagrożenia metanowego. Systemy Wspomagania w Inżynierii Produkcji 7, 1, 360-376.
  • [29] Szlązak N., Obracaj D., Swolkień J., 2018b. An Evaluation of the Functioning of Cooling Systems in the Polish Coal Mine Industry. Energies 11 (9), 2267.
  • [30] Szlązak N., Obracaj D., Swolkień J., 2019. Methods of Methane Control in Polish Coal Mines. In Proceedings of the 11th International Mine Ventilation Congress 292-307. Springer.
  • [31] Tutak M., Brodny J., 2018. Analysis of the Impact of Auxiliary Ventilation Equipment on the Distribution and Concentration of Methane in the Tailgate. Energies 11, 3076, 1-28, doi.org/10.3390/en11113076.
  • [32] Uszko M., 2009. Monitoring of methane and rockburst hazards as a condition of safe coal exploitation in the mines of Kompania Weglowa SA. Procedia Earth and Planetary Science 1, 1, 54-59, doi.org/10.1016/j.proeps.2009.09.011.
  • [33] Wang C., Yang S., Li X., Li J., Jian C., 2019. Comparison of the initial gas desorption and gas-release energy characteristics from tectonically-deformed and primary-undeformed coal. Fuel 238, 66-74, doi.org/10.1016/j.fuel.2018.10.047.
  • [34] Wang K., Wu Z., Zhou A., Jiang Y., Feng S., 2016. Experimental study of high concentrations of coal mine methane behavior in downward ventilated tilted roadways. Journal of Wind Engineering and Industrial Aerodynamics 158, 69-80.
  • [35] Yuan S., Zhang Z., Deng K., Li C., 2010. Thermal hazard in Chinese coal mines and measures of its control. Mine Safety and Efficient Exploitation Facing Challenges of The 21st Century, p. 15-21.
  • [36] Yueze L., Saad A., Agus P.S., Jundika C.K., 2017. Prediction of air flow, methane, and coal dust dispersion in a room and pillar mining face. International Journal of Mining Science and Technology 27, 4, 657-662, doi.org/10.1016/j.ijmst.2017.05.019.
  • [37] Zhong M., Xing W., Weicheng F., Peide L., Baozhi C., 2003. Airflow optimizing control research based on genetic algorithm during mine fire period. Journal of fire sciences 21 (2), 131-153.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a89ec9c-4873-4061-955c-ffe5100f2c29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.