Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper deals with rotational moulding. The relationship between mould speed and wall thickness in the upper, middle and lower areas of rotational moulded parts is investigated. Young’s modulus of moulded parts is determined via static tensile testing. A static compression test is performed to determine the maximum compressive force causing strain. The test is conducted on the wall of moulded parts, parallel to the main axis of rotation. Also, energy consumption in rotational moulding is investigated for different rotational speeds of the mould. Moulded parts are made of DOWLEX®2629UE linear low-density polyethylene (LLDPE). Experimental results are statistically analysed using STATISTICA 13. Non-parametric statistical tests are used for results analysis. The ANOVA method is employed to determine if there are any significant differences between obtained results. The statistical tests show that the range is much narrower for a speed ratio of 4:1. The narrowest range value is obtained for 12\3 rpm. The highest Young’s modulus values are obtained for the parts moulded at 12\3 rpm (1263.33 MPa) and 16\4 rpm (1263.67 MPa). The highest maximum compressive force is obtained for the parts moulded at 12\3 rpm (10 400 N). An analysis of the results demonstrates that the part moulded at 12\3 rpm has the most advantageous properties. For this mould speed, the power consumption amounts to 8.28 kWh. Experimental results and statistical analyses demonstrate that mould speed affects both moulded part quality and energy consumption in the rotational moulding process.
Rocznik
Tom
Strony
art. no. e143106
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Poland
autor
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Poland
autor
- Department of Sustainable Transport and Powertrains, Faculty of Mechanical Engineering, Lublin University of Technology, Poland
Bibliografia
- [1] D. Czarnecka-Komorowska, K. Bryll, E. Kostecka, M. Tomasik, E. Piesowicz, and K. Gawdzinska, “The composting of PLA/HNT biodegradable composites as an eco-approach to the sustainability,” Bull. Pol. Acad. Sci. Tech. Sci., no. 69, p. e136720, 2021, doi: 10.24425/bpasts.2021.136720.
- [2] S.K. Selvaraj, A. Raj, R. Rishikesh Mahadevan, U. Chadha, and V. Paramasivam, “A review on machine learning models in injection molding machines,” Adv. Mater. Sci. Eng., vol. 2022, p. 1949061, 2022, doi: 10.1155/2022/1949061.
- [3] N. Gupta, P.L. Ramkumar, and V. Sangani, “An approach toward augmenting materials, additives, processability and parameterization in rotational molding: a review,” Mater. Manuf. Process., vol. 35, no. 14, pp. 1539–1556, 2020, doi: 10.1080/10426914.2020.1779934.
- [4] R.J. Crawford and M.P. Kearns, Practical Guide to Rotational Moulding, Elsevier, 2021, p. 13.
- [5] P. Nugent, 18 – Rotational Molding. William Andrew Publishing: 2011, pp. 311–332, doi: 10.1016/B978-1-4377-3514-7.10018-2.
- [6] R.J. Crawford and J.L. Throne, Rotational Molding Technology. William Andrew Publising, 2001, p. 11.
- [7] P. Nugent, Rotational molding: a practical guide. William Andrew Publishing: 2001, pp. 809–811.
- [8] R.C. Vázquez Fletes et al., “Morphological and mechanical properties of bilayers wood-plastic composites and foams obtained by rotational molding,” Polymers., vol. 12, no. 3, p. 503, 2020, doi: 10.3390/polym12030503.
- [9] P.S. Sari, S. Thomas, P. Spatenka, Z. Ghanam, and Z. Jenikova, “Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding,” Compos. B: Eng., vol. 177, p. 107344, 2019, doi: 10.1016/j.compositesb.2019.107344.
- [10] J. Andrzejewski, A. Krawczak, K.Wesoły, and M. Szostak, “Rotational molding of biocomposites with addition of buckwheat husk filler. Structure-property correlation assessment for materials based on polyethylene (PE) and poly (lactic acid) PLA,” Compos. B: Eng., vol. 202, p. 108410, 2020, doi: 10.1016/j.compositesb.2020.108410.
- [11] Y. Li, J.C. Liang,W. Zhang,W. Qi, M. Su, and C.D. Liu, “Study on processs and impact strength for a rotationally molded truck fender,” J. Mater. Proces. Technol., no. 187–188, pp. 492–496, 2007, doi: 10.1016/j.jmatprotec.2006.11.142.
- [12] N. Gupta and P. L. Ramkumar, “Analysis of synthetic fiber-reinforced LLDPE based on melt flow index for rotational molding,” Advances in Lightweight Materials and Structures. Springer Proceedings in Materials, 2020, vol. 8, pp. 599606, doi: 10.1007/978-981-15-7827-4_61.
- [13] A. Mostafa, D.G.S. Sanchez, N. Sirach, R.V. Padilla, and H. Alsanat, “Analytical, numerical and experimental analysis of the creep behaviour of polyethylene polymers,” in International Conference on Numerical Modelling in Engineering, Belgium, 2021.
- [14] G. Beall, Rotational molding: Design, materials, tooling, and processing. Hanser Verlag, 1998.
- [15] V. Sangeetha, D. Gopinath, R. Prithivirajan, V.G. Chandran, and R.M. Kumar, “Investigating the mechanical, thermal and melt flow index properties of HNTs–LLDPE nano composites for the applications of rotational moulding,” Polym. Test., vol. 89, p. 106595, 2020, doi: 10.1016/j.polymertesting.2020.106595.
- [16] G. Höfler, K. Jayaraman, and R. Lin, “Rotational moulding and mechanical characterisation of micron-sized and nano-sized reinforced high density polyethylene,” Key Eng. Mater., vol. 809, pp. 65–70, 2019, doi: 10.4028/www.scientific.net/KEM.809.65.
- [17] T. Ouprara and K. Sangpradit, “The development of rotational molding of waste bamboo powder with LLDPE plastic powder,” in E3S Web of Conferences, The 13th Thai Society of Agricultural Engineering International Conference, Thailand, 2020.
- [18] G. Gogos, “Bubble removal in rotational molding,” Polym. Eng. Sci., vol. 44, no. 2, pp. 388–394, 2004, doi: 10.1002/pen.20035.
- [19] J. Adams, Y. Jin, D. Barnes, J. Butterfield, and M. Kearnes, “Motion control for uniaxial rotational molding,” J. Appl. Polym. Sci., no. 138, p. 49879, 2021, doi: 10.1002/app.49879.
- [20] R.J. Crawford and M.P. Kearns, Practical Guide to Rotational Moulding. Elsevier: 2021, pp. 120–123.
- [21] J. Adams, Y. Jin, D. Barnes, and J. Butterfield, “Simulation the rotational moulding process using discrete element methods,” in IMC34 – 34th International Manufacturing Conference At: Sligo Institute of Technology, 2021.
- [22] J. Nieschlag et al., “Experimental and numerical analysis of mold filling in rotational molding,” J. Compos. Sci., vol.5, no.11, p. 289, 2021, doi: 10.3390/jcs5110289.
- [23] M. Daryadel, T. Azdast, M. Khatami, and M. Moradian, “Investigation of tensile properties of polymeric nanocomposite samples in the rotational molding process,” Polym. Bull., vol. 78, no. 5, pp. 24652481, 2021.
- [24] M.K. Raut and M.N. Raut, “A case study-optimization of plastic rotomolding process by anova and taguchi methods,” Ind. Eng. J., vol. 13, no. 12, pp. 39–44, 2020.
- [25] S.J. Liu and K.M. Peng, “Rotational molding of polycarbonate reinforced polyethylene composites: processing parameters and properties,” Polym. Eng. Sci., vol. 50, no. 7, pp. 1457–1465, 2010, doi: 10.1002/pen.21668.
- [26] A. Tcharkhtchi and J. Verdu, “Structure processibility relationships during rotational moulding of plastics,” Adv. Eng. Mate., vol. 6, no. 12, pp. 983–992, 2004, doi: 10.1002/adem.200400126.
- [27] A. Marcilla, J.C. García-Quesada, R. Ruiz-Femenia, and M.I. Beltrán, “Crosslinking of rotational molding foams of polyethylene,” Polym. Eng. Sci., vol. 47, no. 11, pp. 1804–1812, 2007, doi: 10.1002/pen.20880.
- [28] M.J. Oliveira and G. Botelho, “Degradation of polyamide 11 in rotational moulding,” Polym. Degrad. Stab., vol. 93, no. 1, pp. 139–146, 2008, doi: 10.1016/j.polymdegradstab.2007.10.004.
- [29] M. Kontopoulou and J. Vlachopoulos, “Melting and densification of thermoplastic powders,” Polym. Eng. Sci., vol. 41, no. 2, pp. 155–169, 2001, doi: 10.1002/pen.10718.
- [30] S.S. Abhilash, R. Luckose, and D.L. Singaravelu, “Processing and characterization of HDPE and MDPE processed by rotational, moulding,”. Mater. Today: Proc., vol, 27, pp. 2029–2032, 2020, doi: 10.1016/j.matpr.2019.09.052.
- [31] M.C. Cramez, M.J. Oliveira, and R.J. Crawford, “Effect of nucleating agents and cooling rate on the microstructure and properties of a rotational moulding grade of polypropylene,” J. Mater. Sci., vol. 36, no. 9, pp. 2151–2161, 2001.
- [32] M. Gupta, P.L. Ramkumar, and V. Sangani, “An approach toward augmenting materials, additives, processability and parameterization in rotational molding: a review,” Mater. Manuf. Process., no. 35, pp. 1539–56, 2020, doi: 10.1080/10426914.2020.1779934.
- [33] P.L. Ramkumar, D.M. Kulkarni, and V.V. Chaudhari, “Parametric and mechanical characterization of linear low density polyethylene (LLDPE) using rotational moulding technology,” Sadhana, vol. 39, no. 3, pp. 625–35, 2014, doi: 10.1007/s12046-013-0223-4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a89b036-ed48-4015-a94b-f39abfda3996