Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Fizyczne i mechaniczne zachowanie betonu z recyklingu poddanego testom niszczącym i nieniszczącym
Języki publikacji
Abstrakty
Aggregates recycled from construction sites may exhibit slightly inferior characteristics compared to natural aggregates in terms of porosity, friability, and variability. However, it must be acknowledged that although recycled aggregates are currently used only in small proportions for manufacturingconcrete, their usage is steadily increasing. It is now widely recognised that the reuse of recycled aggregates in mortar and concrete significantly contributes to the preservation of alluvial aggregates. The valorisation of recycled aggregates in concrete and mortar offers a clear economic advantage in the construction sector. Indeed, the reuse of materials from demolition could be envisaged directly on site or at construction waste recycling and treatment platforms. Additionally, it should be noted that to date, there is no specific standard for measuring the water absorption of recycled aggregates. Regarding the physical properties, the estimation of the absorption kinetics of the recycled aggregates has proved necessary. Moreover, other equally important measurements must be undertaken to determine all the other properties. The results obtained demonstrated that a good correlation exists between the substitution rate and the physical and mechanical properties of the prepared concrete. Furthermore, it was decided to vary the substitution rate of natural sand with recycled sand during the manufacture of concrete according to the following percentages: 25% recycled sand with 75% natural sand, and 50% recycled sandwith 50% natural sand.
Kruszywa pochodzące z recyklingu z placów budowy mogą wykazywać nieco gorsze właściwości w porównaniu do kruszyw naturalnych pod względem porowatości, kruchości i zmienności. Należy jednak zauważyć, że chociaż kruszywa z recyklingu są obecnie stosowane tylko w niewielkich proporcjach do produkcji betonu, ich użycie stale rośnie. Obecnie powszechnie uznaje się, że ponowne użycie kruszyw z recyklingu w zaprawach i betonie znacząco przyczynia się do ochrony kruszyw aluwialnych. Waloryzacja kruszyw z recyklingu w betonie i zaprawach oferuje wyraźną korzyść ekonomiczną w sektorze budowlanym. Rzeczywiście, ponowne użycie materiałów z rozbiórek można rozważać bezpośrednio na miejscu lub w miejscach recyklingu i przetwarzania odpadów budowlanych. Ponadto, należy zauważyć, że do tej pory nie ma specyficznej normy do pomiaru nasiąkliwości przez kruszywa z recyklingu. W odniesieniu do właściwości fizycznych, okazało się konieczne oszacowanie kinetyki absorpcji kruszyw z recyklingu. Co więcej, muszą zostać przeprowadzone inne równie ważne pomiary, aby określić wszystkie pozostałe właściwości. Uzyskane wyniki wykazały, że istnieje dobra korelacja między stopień substytucji a właściwościami fizycznymi i mechanicznymi przygotowanego betonu. Ponadto, zdecydowano się zmieniać stopień substytucji piasku naturalnego piaskiem z recyklingu podczas produkcji betonu według następujących procentów: 25% piasku z recyklingu i 75% piasku naturalnego oraz 50% piasku z recyklingu i 50% piasku naturalnego.
Czasopismo
Rocznik
Tom
Strony
37--57
Opis fizyczny
Bibliogr. 50 poz., fig., tab.
Twórcy
autor
- Civil Engineering Department; Physico-Chemistry of Advanced Materials Laboratory (LPCMA); Djillali Liabès University
autor
- Civil Engineering Department; LRGC laboratory; Amar Telidji University
autor
- Civil Engineering Department; Physico-Chemistry of Advanced Materials Laboratory (LPCMA); Djillali Liabès University
autor
- Energy and Process Engineering Department; LGPME laboratory; Djillali Liabès University
autor
- Le Havre Normandie University
Bibliografia
- 1. Abina A. et al., “Challenges and opportunities of terahertz technology in construction and demolition waste management”, Journal of Environmental Management, vol. 315, (2022), p. 115118. https://doi.org/10.1016/j.jenvman.2022.115118
- 2. Yılmaz T. et al., “Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings”, Journal of Environmental Management, vol. 222, (2018), pp. 250–259. https://doi.org/10.1016/j.jenvman.2018.05.075
- 3. Züst S. et al., “A graph based Monte Carlo simulation supporting a digital twin for the curatorial management of excavation and demolition material flows”, Journal of Cleaner Production, vol. 310, (2021), p. 127453. https://doi.org/10.1016/j.jclepro.2021.127453
- 4. Lederer J. et al., “Raw materials consumption and demolition waste generation of the urban building sector 2016–2050: A scenario-based material flow analysis of Vienna”, Journal of Cleaner Production, vol. 288, (2021), p. 125566. https://doi.org/10.1016/j.jclepro.2020.125566
- 5. Khan A.-R. et al., “Structural behaviour and strength prediction of recycled aggregate concrete beams”, Arabian Journal for Science and Engineering, vol. 45, no. 5, (2020), pp. 3611–3622. https://doi.org/10.1007/s13369-019-04195-w
- 6. Tammam Y. et al., “Effect of waste filler materials and recycled waste aggregates on the production of geopolymer composites”, Arabian Journal for Science and Engineering, vol. 48, no. 4, (2023), pp. 4823–4840. https://doi.org/10.1007/s13369-022-07230-5
- 7. Packrisamy K. and Jayakumar K., “Effect of ceramic tile waste as a fine aggregate on compressive strength, permeability, and microstructural properties of fly ash concrete”, Arabian Journal of Geosciences, vol. 15, no. 5, (2022), p. 407. https://doi.org/10.1007/s12517-022-09731-x
- 8. Chaabane L. A. et al., “Study and comparative approach to materials used in ancient Egypt and the modern era”, Arabian Journal of Geosciences, vol. 15, no. 5, (2022), p. 382. https://doi.org/10.1007/s12517-022-09648-5
- 9. Recyc-québec, “Bilan 2002 de la gestion des matières résiduelles au Québec”, 2002.
- 10. The Recycling Partnership, “Increasing Recycling Rates with EPR Policy”, (2023).
- 11. Le Moigne R., L’économie circulaire : stratégie pour un monde durable / Rémy Le Moigne. Dunod. Malakoff CN - 332.82, 2018.
- 12. Commission des communautés européennes, “Décision n°2000/532/CE du 03/05/00 remplaçant la décision 94/3/CE établissant une liste de déchets en application de l ’ article 1er, point a), de la directive 75/442/CEE du Conseil relative aux déchets et la décision 94/904/CE du”, 2000.
- 13. Debieb F. et al., “Mechanical and durability properties of concrete using contaminated recycled aggregates”, Cement and Concrete Composites, vol. 32, no. 6, (2010), pp. 421–426. https://doi.org/10.1016/j.cemconcomp.2010.03.004
- 14. Levy S. M. and Helene P., “Durability of recycled aggregates concrete: a safe way to sustainable development”, Cement and Concrete Research, vol. 34, no. 11, (2004), pp. 1975–1980. https://doi.org/10.1016/j.cemconres.2004.02.009
- 15. Evangelista L. and de Brito J., “Durability performance of concrete made with fine recycled concrete aggregates”, Cement and Concrete Composites, vol. 32, no. 1, (2010), pp. 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005
- 16. Gómez-Soberón J. M. V, “Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study”, Cement and Concrete Research, vol. 32, no. 8, (2002), pp. 1301–1311. https://doi.org/10.1016/S0008-8846(02)00795-0
- 17. Olorunsogo F. T. and Padayachee N., “Performance of recycled aggregate concrete monitored by durability indexes”, Cement and Concrete Research, vol. 32, no. 2, (2002), pp. 179–185. https://doi.org/10.1016/S0008-8846(01)00653-6
- 18. Abbas S. et al., “Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates”, Construction and Building Materials, vol. 132, (2017), pp. 61–70. https://doi.org/10.1016/j.conbuildmat.2016.11.126
- 19. Mamery S., “Béton à base de recyclats : influence du type de recyclats et rôle de la formulation”, Université Sciences et Technologies - Bordeaux I; Université Félix Houphouët-Boigny (Abidjan, Côte d’Ivoire), 2013.
- 20. Bouali E. et al., “Rheological and mechanical properties of heavy density concrete including barite powder”, Arabian Journal for Science and Engineering, vol. 45, no. 5, (2020). https://doi.org/10.1007/s13369-019-04331-6
- 21. Mehta P. K. and Monteiro P. J. M., Concrete: microstructure, properties, and materials, 4th ed. ed. New York: McGraw-Hill Education, 2014.
- 22. Oikonomou N. D., “Recycled concrete aggregates”, Cement and Concrete Composites, vol. 27, no. 2, (2005), pp. 315–318. https://doi.org/10.1016/j.cemconcomp.2004.02.020
- 23. Sri Ravindrarajah R., “Properties of concrete made with crushed concrete as coarse aggregate”, Magazine of Concrete Research, vol. 37, no. 130, (1985), pp. 29–38. https://doi.org/10.1680/macr.1985.37.130.29
- 24. Weimann K. et al., “Building materials from waste”, Materials Transactions, vol. 44, no. 7, (2003), pp. 1255–1258. https://doi.org/10.2320/matertrans.44.1255
- 25. IREX, “PN RECYBETON, Le recyclage complet du béton”, Paris, 2011.
- 26. Jemmali N., “Influence de la forme et de la rugosité des particules d’un granulat sur les propriétés et les coûts du béton compacté au rouleau”, Université de Sherbrooke, 1996.
- 27. Hansen T. C. and Narud H., “Strength of recycled concrete made from crushed concrete coarse aggregate”, Concrete International, vol. 5, (1983), pp. 79–83.
- 28. Topçu İ. B. and Canbaz M., “Properties of concrete containing waste glass”, Cement and Concrete Research, vol. 34, no. 2, (2004), pp. 267–274. https://doi.org/10.1016/j.cemconres.2003.07.003
- 29. Maillard J. ., “Evaluation de l’aptitude à l’emploi des sables de fonderie Publication technique”, 1997.
- 30. Rahal K., “Mechanical properties of concrete with recycled coarse aggregate”, Building and Environment, vol. 42, no. 1, (2007), pp. 407–415. https://doi.org/10.1016/j.buildenv.2005.07.033
- 31. Navaro J., “Cinétique de mélange des enrobés recyclés et influence sur les performances mécaniques”, 2011.
- 32. Sindt O., “Propriétes mécaniques de films issus de latex synthétises en présence de tensioactifs copolymérisables”, 1997.
- 33. Hussain H. et al., “Valorisation des agrégats issus de bétons de démolition dans la fabrication de nouveaux bétons”, Environnement, Ingénierie & Développement, vol. N°19-3èm, (2000), pp. 17–22. https://doi.org/10.4267/dechets-sciences-techniques.439
- 34. Etxeberria M. et al., “Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete”, Cement and Concrete Research, vol. 37, no. 5, (2007), pp. 735–742. https://doi.org/10.1016/j.cemconres.2007.02.002
- 35. Santamaria Diaz N. K., “Valorisation des granulats recyclés dans le béton pour les pavages et trottoirs”, (2018).
- 36. Bodet R., “Substitution des granulats alluvionnaires dans l ’ industrie du béton par les granulats marins , concassés ou recyclés”, Epernon, 2003.
- 37. Loranger F., “Caractérisation de matériaux recyclés (bétons, enrobés et fondations granulaires) et évaluation de leur performance dans les bétons conventionnels et compactés au rouleau”, Université Laval, 2001.
- 38. Marquis B. et al., “L’utilisation des matériaux recyclés dans les chaussées : caractérisation, exigences techniques et contrôle.”, Innovation Transport, no. 6, (1999).
- 39. Tam V. W. Y. et al., “New approach in measuring water absorption of recycled aggregates”, Construction and Building Materials, vol. 22, no. 3, (2008), pp. 364–369. https://doi.org/10.1016/j.conbuildmat.2006.08.009
- 40. Toyoki A. and Amasaki S., “Study of the stress waves in the plunger of a rebound hammer at the time of impact”, ACI Symposium Publication, vol. 82, (1984), pp. 17–34. https://doi.org/10.14359/6547
- 41. Ho A. cuong, “Optimisation de la composition et caractérisation d’un béton incorporant des granulats issus du broyage de pneus usagés. : application aux éléments de grande surface.”, 2010.
- 42. Tu T. Y. et al., “Properties of HPC with recycled aggregates”, Cement and Concrete Research, vol. 36, no. 5, (2006), pp. 943–950. https://doi.org/10.1016/j.cemconres.2005.11.022
- 43. De Larrard F., “Structures granulaires et formulation des bétons”, Etudes et recherches des laboratoires des ponts et chaussées, (1999), p. 591.
- 44. Charonnat Y. et al., La maîtrise de l’eau dans le béton hydraulique. LCPC. Paris, 2001.
- 45. Hansen T. C. and Narud H., “Recycled concrete and silica fume make calcium silicate bricks”, Cement and Concrete Research, vol. 13, no. 5, (1983), pp. 626–630. https://doi.org/10.1016/0008-8846(83)90051-0
- 46. Bairagi N. K. et al., “Behaviour of concrete with different proportions of natural and recycled aggregates”, Resources, Conservation and Recycling, vol. 9, no. 1, (1993), pp. 109–126. https://doi.org/10.1016/0921-3449(93)90036-F
- 47. Bravo M. et al., “Durability performance of concrete with recycled aggregates from construction and demolition waste plants”, Construction and Building Materials, vol. 77, (2015), pp. 357–369. https://doi.org/10.1016/j.conbuildmat.2014.12.103
- 48. Moniz C. et al., “Détermination de la performance en laboratoire de matériaux recyclés utilisés en fondation routière Projet R672.1”, (2013).
- 49. Bilodeau J.-P. et al., “Erosion susceptibility of granular pavement materials”, International Journal of Pavement Engineering, vol. 8, no. 1, (Mar. 2007), pp. 55–66. https://doi.org/10.1080/10298430600758980
- 50. Bilodeau J.-P. et al., “Optimisation de la granulométrie des matériaux granulaires de fondation des chaussées”, Canadian Journal of Civil Engineering, vol. 37, no. 10, (Oct. 2010), pp. 1350–1362. https://doi.org/10.1139/L10-083
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a816cf1-b1eb-4afc-93ce-bb0f9fa7b803
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.