PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of active rectifier with LCL filter in the selection process of the weighting factors in finite control set-MPC

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the main problems of multivariable cost functions in model predictive control is the choice of weighting factors. Two finite control set model predictive control algorithms, applied to the three-phase active rectifier with an LCL filter, are described in the paper. The investigated algorithms, i.e. PCicuc and PCigicuc, implement multivariable approaches applying line (grid) current, capacitor voltage and converter current. The main problem dealt with in the paper is the choice of optimum values of the cost function weighting factors. The values of the factors calculated using the method proposed in the paper are very close to the values represented by the lowest THDi of the line current. Moreover, simulations verifying the equations used in the prediction of controlled values, i.e. line current, capacitor voltage and converter current, are presented. Both simulation and experimental results are presented to verify effectiveness of the investigated control strategies under change of the load (P = 5 kW and 2.5 kW), during transient states, under unbalanced and balanced line voltage.
Rocznik
Strony
51--60
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Power Electronics and Electric Drives, Bialystok University of Technology
autor
  • Department of Power Electronics and Electric Drives, Bialystok University of Technology
  • Department of Power Electronics and Electric Drives, Bialystok University of Technology
  • Department of Power Electronics and Electric Drives, Bialystok University of Technology
Bibliografia
  • [1] S. Vazquez, J. Rodriguez, M. Rivera, L.G. Franquelo and M. Norambuena, “Model Predictive Control for Power Converters and Drives: Advances and Trends”, IEEE Transactions on Industrial Electronics 64 (2), 935–947 (2017).
  • [2] J. Rodriguez et al., “State of the Art of Finite Control Set Model Predictive Control in Power Electronics”, IEEE Transactions on Industrial Informatics 9 (2), 1003–1016 (2013).
  • [3] D. du Toit, H. d. T. Mouton, R. Kennel and P. Stolze, “Predictive Control of Series Stacked Flying-Capacitor Active Rectifiers”, IEEE Transactions on Industrial Informatics 9 (2), 697–707 (2013).
  • [4] K. Antoniewicz and K. Rafal, “Model predictive current control method for four-leg three-level converter operating as shunt active power filter and grid connected inverter”, Bull. Pol. Ac.: Tech. 65 (5), 601–607 (2017).
  • [5] O. Sandre-Hernandez, J. d. J. Rangel-Magdaleno and R. Morales-Caporal, “Modified model predictive torque control for a PMSM-drive with torque ripple minimisation”, IET Power Electronics 12 (5), 1033–1042 (2019).
  • [6] A. Dekka, B. Wu, V. Yaramasu, and N.R. Zargari, “Integrated model predictive control with reduced switching frequency for modular multilevel converters”, IET Electr. Power Appl. 11 (5), 857–863 (2017).
  • [7] C. A. Rojas, M. Aguirre, S. Kouro, T. Geyer and E. Gutierrez, “Leakage Current Mitigation in Photovoltaic String Inverter Using Predictive Control With Fixed Average Switching Frequency”, IEEE Transactions on Industrial Electronics 64 (2), 9344–9354 (2017).
  • [8] V. Yaramasu, B. Wu, M. Rivera, M. Narimani, S. Kouro and J. Rodriguez, “Generalised approach for predictive control with common-mode voltage mitigation in multilevel diode-clamped converters”, IET Power Electronics 8 (8), 1440–1450 (2015).
  • [9] A.A. Ahmed, B.K. Koh and Y.I. Lee, “A Comparison of Finite Control Set and Continuous Control Set Model Predictive Control Schemes for Speed Control of Induction Motors”, IEEE Transactions on Industrial Informatics 14 (4), 1334–1346 (2018).
  • [10] P. Wiatr and A. Kryński, “Model predictive control of multilevel cascaded converter with boosting capability – experimental results”, Bull. Pol. Ac.: Tech. 65 (5), 589–599 (2017).
  • [11] A. Godlewska, “Control of the Current Source Rectifier using Finite Control Set Model Predictive Control”, 2017 19th Eur. Conf. Power Electron. Appl., 2017, 1–10.
  • [12] K. Antoniewicz, M. Jasinski, M.P. Kazmierkowski and M. Malinowski, “Model Predictive Control for Three-Level Four-Leg Flying Capacitor Converter Operating as Shunt Active Power Filter”, IEEE Transactions on Industrial Electronics 63 (8), 5255–5262 (2016).
  • [13] J. Scoltock, T. Geyer and U. Madawala, “Model Predictive Direct Current Control for a grid-connected converter: LCL-filter versus L-filter”, 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, 2013, 576–581.
  • [14] W. Wu, Y. Liu, Y. He, H.S. Chung, M. Liserre and F. Blaabjerg, “Damping Methods for Resonances Caused by LCL-Filter-Based Current-Controlled Grid-Tied Power Inverters: An Overview”, IEEE Transactions on Industrial Electronics 64 (9), 7402–7413 (2017).
  • [15] N. Panten, N. Hoffmann and F.W. Fuchs, “Finite Control Set Model Predictive Current Control for Grid-Connected Voltage-Source Converters With LCL Filters: A Study Based on Different State Feedbacks”, IEEE Transactions on Power Electronics 31 (7), 5189–5200 (2016).
  • [16] P. Falkowski and A. Sikorski, “Finite Control Set Model Predictive Control for Grid-Connected AC–DC Converters With LCL Filter”, IEEE Transactions on Industrial Electronics 65 (4), 2844–2852 (2018).
  • [17] P. Cortes et al., “Guidelines for weighting factors design in Model Predictive Control of power converters and driven”, 2009 IEEE International Conference on Industrial Technology, Gippsland, VIC, 2009, 1-7.
  • [18] N. Hoffmann, F. W. Fuchs, M.P. Kazmierkowski and D. Schröder, “Digital current control in a rotating reference frame – Part I: System modeling and the discrete time-domain current controller with improved decoupling capabilities”, IEEE Transactions on Power Electronics 31 (7), 5290–5305 (2016).
  • [19] F. Wang, S. Li, X. Mei, W. Xie, J. Rodríguez and R.M. Kennel, “Model-Based Predictive Direct Control Strategies for Electrical Drives: An Experimental Evaluation of PTC and PCC Methods”, IEEE Transactions on Industrial Informatics 11 (3), 671–681 (2015).
  • [20] P. Zanchetta, “Heuristic multi-objective optimization for cost function weights selection in finite states model predictive control”, 2011 Workshop on Predictive Control of Electrical Drives and Power Electronics, Munich, 2011, 70–75.
  • [21] F. Villarroel, J.R. Espinoza, C.A. Rojas, J. Rodriguez, M. Rivera, and D. Sbarbaro, “Multiobjective switching state selector for finite-states model predictive control based on fuzzy decision making in a matrix converter”, IEEE Transactions on Industrial Electronics 60 (2), 589–599, (2013).
  • [22] T.J. Vyncke, S. Thielemans and J.A. Melkebeek, “Finite-Set Model-Based Predictive Control for Flying-Capacitor Converters: Cost Function Design and Efficient FPGA Implementation”, IEEE Transactions on Industrial Informatics 9 (2), 1113–1121 (2013).
  • [23] Y. Zhang and H. Yang, “Two-Vector-Based Model Predictive Torque Control Without Weighting Factors for Induction Motor Drives”, IEEE Transactions on Power Electronics 31 (2), 1381–1390 (2016).
  • [24] C.A. Rojas, J. Rodriguez, F. Villarroel, J.R. Espinoza, C.A. Silva and M. Trincado, “Predictive Torque and Flux Control Without Weighting Factors”, IEEE Transactions on Industrial Electronics 60 (2), 681–690 (2013).
  • [25] T. Dragičević and M. Novak, “Weighting Factor Design in Model Predictive Control of Power Electronic Converters: An Artificial Neural Network Approach”, IEEE Transactions on Industrial Electronics 66 (11), 8870–8880 (2019).
  • [26] T. Geyer, “Algebraic Tuning Guidelines for Model Predictive Torque and Flux Control”, IEEE Transactions on Industry Applications 54 (5), 4464–4475 (2018).
  • [27] L. A. Serpa, S. Ponnaluri, P.M. Barbosa and J.W. Kolar, “A Modified Direct Power Control Strategy Allowing the Connection of Three-Phase Inverters to the Grid Through LCL Filters”, IEEE Transactions on Industry Applications 43 (5), 1388–1400 (2007).
  • [28] X. Zhang, Y. Wang, C. Yu, L. Guo and R. Cao, “Hysteresis Model Predictive Control for High-Power Grid-Connected Inverters With Output LCL Filter”, IEEE Transactions on Industrial Electronics 63 (1), 246–256 (2016).
  • [29] A. Godlewska, R. Grodzki, P. Falkowski, M. Korzeniewski, K. Kulikowski, and A. Sikorski, “Advanced Control Methods of DC/AC and AC/DC Power Converters – Look-Up Table and Predictive Algorithms”, in Advanced Control of Electrical Drives and Power Electronic Converters, J. Kabzinski, Ed. Cham: Springer International Publishing, 221–302, 2017.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a8088f3-4454-40b6-8c10-a45fb72f8024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.