Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Low-volume and custom production jobs in small and medium-sized metalworking enterprises are often declined due to the high fixed costs and time requirements of manual CAD modeling. This paper presents a practical, production-ready desktop application for the automated generation of DXF files from photographs of physical parts, designed to support rapid laser cutting and prototyping workflows. The system combines a user-friendly GUI with a robust computer vision pipeline including adaptive thresholding, contour extraction, geometric scaling, and vector simplification. Unlike generic raster-to-vector tools, it targets the specific needs of SMEs: offline use, closed contours, minimal training, and compatibility with CAM systems. A real-world case study demonstrates the successful replication of an agricultural machine parts, showing ~90% reduction in preparation time and ~45% profit margin on the order. Interviews with industry stakeholders confirm the potential of the proposed solution to recover previously unviable jobs and increase monthly revenues by an estimated 5-7%. This interdisciplinary contribution integrates computer vision and applied economics, offering a scalable solution to improve productivity and digital inclusion in SMEs.
Słowa kluczowe
Rocznik
Tom
Strony
61--75
Opis fizyczny
Bibliogr. 14 poz., fot., rys., tab.
Twórcy
autor
- Kozminski University, ul. Jagiellońska 57/59, 03-301 Warsaw, Poland
Bibliografia
- 1. Herps, K., Dang, Q.-V., Martagan, T. G., & Adan, I. J. B. F.: A simulation-based approach to design an automated high-mix low-volume manufacturing system. Journal of Manufacturing Systems https://doi.org/10.1016/j.jmsy.2022.05.013
- 2. Müller, J. M., Islam, N., Kazantsev, N., Romanello, R., Olivera, G., Das, D., & Hamzeh, R.: Barriers and Enablers for Industry 4.0 in SMEs: A Combined Integration Framework. IEEE Transactions on Engineering Management (2024). https://doi.org/10.1109/TEM.2024.3365771
- 3. Intwala, A., et al.: Image to CAD: Feature extraction and translation of raster engineering drawings to DXF format. In: Computer Vision and Image Processing (CVIP 2019), CCIS, vol. 115 Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4015-8_18
- 4. European Commission: Digital Economy and Society Index (DESI) 2022– over all progress but digital skills, SMEs and 5G lag behind. (2022). https://digital-strategy.ec.europa.eu/en/news/digital-economy-and-society-index-2022-overall-progress-digital-skills-smes--skills-smes-and-5g-networks-lag
- 5. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer 25(11)
- 6. ezdxf Developers: ezdxf: DXF for Python, https://ezdxf.readthedocs.io. Last accessed 20 Jan 2025.
- 7. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man Cybern. 9(1), 62–66 (1979).
- 8. Douglas, D.H., Peucker, T.: Algorithms for the reduction of the number of points required to represent a line. The Canadian Cartographer 10(2), (1973).
- 9. Python Software Foundation: Python 3.11 Documentation, https://docs.python.org/3.11/. Last accessed 28 May 2025.
- 10. Paulsen, G.: How to Convert Image Files to DXF for Sheet Cutting. Xometry (Blog), 25 May 2022 (updated 14 May 2025). https://www.xometry.com/resources/sheet/converting-images-to-dxf/. (Accessed 28 May 2025).
- 11. SME & CESMII: SME and CESMII release 2022 Smart Manufacturing Market Survey results. Press Release, 18 May 2022. https://www.prnewswire.com/news-releases/sme-cesmii-release-2022-smart-manufacturing-market-survey-301561585.html
- 12. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 4th edn. Pearson (2018).
- 13. Autodesk, Inc.: AutoCAD 2023 User Guide. Available online: https://images.autodesk.com/adsk/files/autocad_aca_user_guide_english.pdf
- 14. Autodesk DXF Reference: The DXF File Structure Explained. https://ezdxf.readthedocs.io/en/stable/dxfinternals/filestructure.html. Last accessed 24 Oct 2025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a7ec09a-c7ac-4649-ae11-a941ebfe0ebe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.