PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reuse of polyester-glass laminate waste in polymer composites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to develop a new generation of polymer composite materials that would ensure the use of residual and serious environmental problems of polyester-glass laminate waste. Design/methodology/approach: The glass reinforced polyester waste was ground and added to produce new composites. Thermoplastic - high impact polystyrene was selected for the composite matrix. Composites containing 10, 20, 30% by weight of the filler of polyester-glass laminate powder were made. The process of extrusion and subsequent injection was used to prepare the test samples. The influence of the filler on selected properties of composites was evaluated. The physical properties of the filler as well as the processing properties of the mixture as well as the mechanical properties - impact strength and tensile strength of the obtained composites were investigated. Findings: A decrease in tensile strength and impact strength was observed along with an increase in the amount of filler. Research limitations/implications: It would be interesting to carry out further analyzes, in particular with a higher volume fraction of the filler or with a different composite structure, e.g. using PVC as a matrix. The developed research topic is a good material for the preparation of publications of a practical and scientific nature, especially useful in the research and industrial environment. Practical implications: The shredded glass-polyester waste can be used as a filler of polystyrene, however, the resulting composite could be used to produce parts with slightly less responsible functions such as artificial jewelery or toy elements. Originality/value: Obtained results are a new solution a global waste management solution for glass reinforced polyester waste, which may contribute to the sustainable development of the composite materials industry through the partial utilization of waste composites with a duroplastic matrix.
Rocznik
Strony
49--58
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Theoretical and Applied Mechanics, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • [1] M.O. Rodrigues, N. Abrantes, F.J.M. Gonçalves, H. Nogueira, J.C. Marques, A.M.M. Gonçalves, Impacts of plastic products used in daily life on the environment and human health: What is known? Environmental Toxicology and Pharmacology 72 (2019) 103239. DOI: https://doi.org/10.1016/j.etap.2019.103239
  • [2] I. Ručevska, P. Villarrubia-Gómez, Inventory of Global and Regional Plastic Waste Initiatives, GRID-Arendal, Arendal, Norway, 2021.
  • [3] K.C. Ugoeze, E.O. Amogu, K.E. Oluigbo, N. Nwachukwu, Environmental and public health impacts of plastic wastes due to healthcare and food products packages: A Review, Journal of Environmental Science and Public Health 5 (2021) 1-31. DOI: https://doi.org/10.26502/jesph.96120114
  • [4] L. Kyzioł, K. Panasiuk, M. Barcikowski, G. Hajdukiewicz, The influence of manufacturing technology on the properties of layered composites with poliester-glass recyclate additive, Progress in Rubber, Plastics and Recycling Technology 36/1 (2019) 18-30. DOI: https://doi.org/10.1177/1477760619895003
  • [5] K. Panasiuk, G. Hajdukiewicz, Production of composites with added waste polyester-glass with their initial mechanical properties, Scientific Journals of the Maritime University of Szczecin 52/124 (2017) 30-36. DOI: https://doi.org/10.17402/242
  • [6] L. Kyzioł, K. Panasiuk, G. Hajdukiewicz, The influence of granulation and content of polyester-glass waste on properties of composites, Journal of KONES Powertrain and Transport 25/4 (2018) 223-229. DOI: https://doi.org/10.5604/01.3001.0012.4795
  • [7] M. Rutecka, M. Kozioł, J. Myalski, Influence of polyester-glass fiber recyclate filler on mechanical properties of laminates, Composites 4 (2006) 41-46 (in Polish).
  • [8] J. Myalski, Properties of laminates containing polymer glass fiber recyclates, Journal of Achievements in Materials and Manufacturing Engineering 14/1-2 (2006) 54-58.
  • [9] S. Karuppannan Gopalraj, T. Kärki, A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis. SN Applied Sciences 2 (2020) 433. DOI: https://doi.org/10.1007/s42452-020-2195-4
  • [10] D.S. Cousins, Y. Suzuki, R.E. Murray, J.R. Samaniuk, A.P. Stebner, Recycling glass fiber thermoplastic composites from wind turbine blades, Journal of Cleaner Production 209 (2019) 1252-1263. DOI: https://doi.org/10.1016/j.jclepro.2018.10.286
  • [11] S. Job, Recycling glass fibre reinforced composites ‒ history and progress, Reinforced Plastics 57/5 (2013) 19-23. DOI: https://doi.org/10.1016/S0034-3617(13)70151-6
  • [12] A.C. Meira Castro, J.P. Carvalho, M.C.S. Ribeiro, J.P. Meixedo, F.J.G. Silva, A. Fiúza, M.L. Dinis, An integrated recycling approach for GFRP pultrusion wastes: recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets, Journal of Cleaner Production 66 (2014) 420-430. DOI: https://doi.org/10.1016/j.jclepro.2013.10.030
  • [13] M. Jastrzębska, Thermoplastic Composites with Glass Polyester Recyclate, Polish Journal of Commodity Science 1 (2019) 129-134. DOI: https://doi.org/10.19202/j.cs.2019.01.12
  • [14] M. Jastrzębska, Issues of glass polyester waste management, Scientific Journal of Gdynia Maritime University 93 (2016) 129-133.
  • [15] V. Goodship, Management, Recycling and Reuse of Waste Composites, Woodhead Publishing Series in Composites Science and Engineering, Elsevier, 2009.
  • [16] J.K. Fink, Polymer Waste Management, John Wiley & Sons, 2018.
  • [17] Z. Foltynowicz, D. Akesson, M. Skrifvars, J. Christéen, Products obtained from decomposition of glass fiber-reinforced composites using microwave pyrolysis, Polymers 58/7-8 (2013) 582-586. DOI: https://doi.org/10.14314/polimery.2013.582
  • [18] N. Hidayah, Syafrudin, A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel, E3S Web of Conferences 31 (2018) 05013. DOI: https://doi.org/10.1051/e3sconf/20183105013
  • [19] Tonini D., Garcia-Gutierrez P., Nessi S. Environmental effects of plastic waste recycling, EUR 30668 EN, Publications Office of the European Union, Luxembourg, 2021, JRC122455. DOI: https://doi.org/10.2760/6309
  • [20] M. Jastrzębska, Application of glass reinforced polyester waste in window sills production, Chemical Engineering and Equipment 5 (2010) 49-50 (in Polish).
  • [21] F. López, M. Martín, I. García-Díaz, O. Rodríguez, F. Alguacil, M. Romero, Recycling of Glass Fibers from Fiberglass Polyester Waste Composite for the Manufacture of Glass-Ceramic Materials, Journal of Environmental Protection 3/8 (2012) 740-747. DOI: https://doi.org/10.4236/jep.2012.38088
  • [22] A. Adeniyi, S.A. Abdulkareem, J. Ighalo, D. Onifade, S.A. Adeoye, A.E. Sampson, Morphological and thermal properties of polystyrene composite reinforced with biochar from elephant grass (Pennisetum purpureum), Journal of Thermoplastic Composite Materials (2020) (published online). DOI: https://doi.org/10.1177/0892705720939169
  • [23] D. Onifade, J. Ighalo, A. Adeniyi, K. Hammed, Morphological and thermal properties of polystyrene composite reinforced with biochar from plantain stalk fibre, Materials International 2/2 (2020) 0150-0156. DOI: https://doi.org/10.33263/Materials22.150156
  • [24] S.E. Dağ, P.A. Bozkurt, F. Eroğlu, M. Çelik, Preparation, characterization, and properties of polystyrene /Na-montmorillonite composites. Journal of Thermoplastic Composite Materials 32/8 (2019) 1078-1091. DOI: https://doi.org/10.1177/0892705718785691
  • [25] U. Saeed, U. Dawood, A.M. Ali, Cellulose triacetate fiber-reinforced polystyrene composite, Journal of Thermoplastic Composite Materials 34/5 (2021) 707-721. DOI: https://doi.org/10.1177/0892705719847249
  • [26] A.G. Adeniyi, S.A. Abdulkareem, S.A. Adeoye, J. Ighalo, Preparation and properties of wood dust (isoberlinia doka) reinforced polystyrene composites, Polymer Bulletine (2021) (published online). DOI: https://doi.org/10.1007/s00289-021-03718-6
  • [27] M. Polok-Rubiniec, A. Włodarczyk-Fligier, Polypropylene matrix composite with charcoal filler, Journal of Achievements in Materials and Manufacturing Engineering 103/2 (2020) 60-66. DOI: https://doi.org/10.5604/01.3001.0014.7195
  • [28] V. Çavuş, F. Mengeloğlu, Utilization of synthetic based mineral filler in wood plastics composite, Journal of Achievements in Materials and Manufacturing Engineering 77/2 (2016) 57-63. DOI: https://doi.org/10.5604/17348412.1230098
  • [29] M.N. Obaid, O.H. Sabr, A.A. Hussein, Characteristic of polypropylene nanocomposite material reinforcement with hydroxyapatite for bone replacement, Journal of Achievements in Materials and Manufacturing Engineering 104/1 (2021) 21-30. DOI: https://doi.org/10.5604/01.3001.0014.8483
  • [30] M. Mrówka, A. Woźniak, S. Prężyna, S. Sławski, The influence of zinc waste filler on the tribological and mechanical properties of silicone-based composites, Polymers 13/4 (2021) 585. DOI: https://doi.org/10.3390/polym13040585
  • [31] M. Mrówka, A. Woźniak, J. Nowak, G. Wróbel, S. Sławski, Determination of mechanical and tribological properties of silicone-based composites filled with manganese waste, Materials 14/16 (2021) 4459. DOI: https://doi.org/10.3390/ma14164459
  • [32] M.F. Martin, J.P. Viola, J.R. Wünsch, Preparation, Properties and Applications of High‐impact Polystyrene, in: J. Scheirs, D.B. Priddy, Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers, New Jersey, John Wiley & Sons, Inc., 2003, 247-280. DOI: https://doi.org/10.1002/0470867213.ch12
  • [33] L. Hýlová, A. Mizera, M. Mizera, R. Grund, M. Ovsík, Mechanical Properties Study of High Impact Polystyrene Under Impact and Static Tests, IOP Conference Series: Materials Science and Engineering 448 (2018) 012044. DOI: https://doi.org/10.1088/1757-899X/448/1/012044
  • [34] R. Chatys, Ł.J. Orman, Technology and properties of layered composites as coatings for heat transfer enhancement, Mechanics of Composite Materials 53/3 (2017) 351-360. DOI: https://doi.org/10.1007/s11029-017-9666-8
  • [35] Ł.J. Orman, R. Chatys, Heat transfer augmentation possibility for vehicle heat exchangers, Proceedings of the International Conference "Transport Means", Lithuania, 2011, 9-12.
  • [36] SYNTHOS PS HI 552M High Impact Polystyrene - HIPS. Technical Data Sheet. Edition Date: 2017-12-01.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a76eb06-0f67-49f4-a730-9a3e503970ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.