Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The role of continental water in polar motion excitation can be illustrated by determining Hydrological Angular Momentum calculated from terrestrial water storage (TWS). In this paper we compare global and regional changes in TWS computed using Coupled Model Intercomparison Project Phase 5 climate models, Global Land Data Assimilation System (GLDAS) land hydrology models and observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. We also compare hydrological excitation functions derived from models with those obtained from the GRACE mission and the hydrological signal in observed polar motion excitation (the so-called geodetic residuals). The results confirm that GLDAS models of seasonal and non-seasonal TWS change are more consistent with GRACE data than climate models; on the other hand, none of the considered models are fully consistent with GRACE data or geodetic residuals. In turn, GRACE observations are most consistent with the non-seasonal hydrological signal in observed excitation. A detailed study of the contribution of different TWS components to the hydrological excitation function shows that soil moisture dominates.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--39
Opis fizyczny
Bibliogr. 85 poz.
Twórcy
autor
- Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Roads and Bridges, Warsaw University of Technology, Warsaw, Poland
autor
- Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- 1. Adhikari S, Ivins ER (2016) Climate-driven polar motion: 2003–2015. Sci Adv. https://doi.org/10.1126/sciadv.1501693
- 2. Bizouard C, Gambis D (2017) The combined solution C04 for earth orientation parameters consistent with international terrestrial reference frame 2014. IERS Notice. http://hpiers.obspm.fr/eoppc/eop/eopc04/C04.guide.pdf
- 3. Brzeziński A, Nastula J, Kołaczek B, Ponte RM (2005) Oceanic excitation of polar motion from interpersonal to decadal periods. In: Sanso F (ed) Proceedings of the IAG general assembly, a window of the future geodesy, Sapporo, Japan, June 30–July 11, IAG symposium series, vol 128, 2003. Springer, New York, pp 591–596. https://doi.org/10.1007/3-540-27432-4_100
- 4. Brzeziński A, Nastula J, Kołaczek B (2009) Seasonal excitation of polar motion estimated from recent geophysical models and observations. J Geodyn 48(3–5):235–240. https://doi.org/10.1016/j.jog.2009.09.021
- 5. Chao BF, O’Connor WP (1988) Global surface-water-induced seasonal variations in the earth’s rotation and gravitational field. Geophys J 94(2):263–270. https://doi.org/10.1111/j.1365-246X.1988.tb05900.x
- 6. Chen JL, Wilson CR (2005) Hydrological excitations of polar motion, 1993–2002. Geophys J Int 160(3):833–839. https://doi.org/10.1111/j.1365-246X.2005.02522.x
- 7. Chen JL, Wilson CR (2008) Low degree gravity changes from GRACE, earth rotation, geophysical models and satellite laser ranging. J Geophys Res Solid Earth 113(6):1–9. https://doi.org/10.1029/2007JB005397
- 8. Chen JL, Wilson CR, Chao BF, Shum CK, Tapley BD (2000) Hydrological and oceanic excitations to polar motion and length-of-day variation. Geophys J Int 141(1):149–156. https://doi.org/10.1046/j.1365-246X.2000.00069.x
- 9. Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on gravity recovery and climate experiment (GRACE) water storage estimates. Geophys Res Lett 32(14):1–4. https://doi.org/10.1029/2005GL022964
- 10. Chen JL, Wilson CR, Tapley BD, Yang ZL, Niu GY (2009) 2005 drought event in the Amazon river basin as measured by GRACE and estimated by climate models. J Geophys Res Solid Earth 114(5):5. https://doi.org/10.1029/2008JB006056
- 11. Chen JL, Wilson CR, Zhou YH (2012) Seasonal excitation of polar motion. J Geodyn 62:8–15. https://doi.org/10.1016/j.jog.2011.12.002
- 12. Chen J, Famigliett JS, Scanlon BR, Rodell M (2016) Groundwater storage changes: present status from GRACE observations. Surv Geophys 37(2):397–417. https://doi.org/10.1007/s10712-015-9332-4
- 13. Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer K-H (2014) GFZ RL05: an improved time-series of monthly GRACE gravity field solutions. In: Flechtner F, Sneeuw N, Schuh W-D (eds) Observation of the system earth from space—CHAMP, GRACE, GOCE and future missions. Advanced technologies in earth sciences. Springer, Berlin, pp 29–39. https://doi.org/10.1007/978-3-642-32135-1_4
- 14. Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang ZL (2003) The common land model. Bull Am Meteor Soc 84(8):1013–1023. https://doi.org/10.1175/BAMS-84-8-1013
- 15. Dobslaw H, Dill R (2017) Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics. Adv Space Res 61(4):1047–1054. https://doi.org/10.1016/j.asr.2017.11.044
- 16. Dobslaw H, Dill R, Grötzsch A, Brzeziński A, Thomas M (2010) Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J Geophys Res Solid Earth 115(10):1–11. https://doi.org/10.1029/2009JB007127
- 17. Dumberry M, Bloxham J (2002) Inner core tilt and polar motion. Geophys J Int 151(2):377–392. https://doi.org/10.1046/j.1365-246X.2002.01756.x
- 18. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of noah land surface model advances in the national centers for environmental prediction operational mesoscale eta model. J Geophys Res Atmos. https://doi.org/10.1029/2002JD003296
- 19. Eubanks TM (1993) Variations in the orientation of the earth. In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics: earth dynamics, vol 24 geodynamics series. AGU, Washington, pp 1–54
- 20. Famiglietti JS (2004) Remote sensing of terrestrial water storage, soil moisture and surface waters. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: frontiers and challenges in geophysics. Geophysical monograph series, vol 150. AGU, Washington, pp 197–207. http://dx.doi.org/10.1029/150GM16
- 21. Famiglietti JS, Rodell M (2007) Water in the balance. Science 340:1300–1301. https://doi.org/10.1126/science.1236460
- 22. Fang P, Hrubiak L, Kato H, Rodell M, Teng WL, Vollmer BE (2008) Global land data assimilation system (GLDAS) products from NASA hydrology data and information services center (HDISC). In: ASPRS 2008 annual conference (2008) pp 1–8
- 23. Freedman FR, Pitts KL, Bridger AFC (2014) Evaluation of CMIP climate model hydrological output for the Mississippi River Basin using GRACE satellite observations. J Hydrol 519:3566–3577. https://doi.org/10.1016/j.jhydrol.2014.10.036
- 24. Greiner-Mai H, Barthelmes F (2001) Relative wobble of the earths inner core derived from polar motion and associated gravity variations. Geophys J Int 144(1):27–36. https://doi.org/10.1046/j.1365-246X.2001.00319.x
- 25. Gross RS, Fukumori I, Menemenlis D (2003) Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J Geophys Res Solid Earth 108(B8):2370. https://doi.org/10.1029/2002JB002143
- 26. Gross RS, Fukumori I, Menemenlis D (2005) Atmospheric and oceanic excitation of decadal-scale Earth orientation variations. J Geophys Res Solid Earth 110(9):1–15. https://doi.org/10.1029/2004JB003565
- 27. Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys 29(4–5):375–397. https://doi.org/10.1007/s10712-008-9038-y
- 28. Güntner A, Stuck J, Werth S, Döll P, Verzano K, Merz B (2007) A global analysis of temporal and spatial variations in continental water storage. Water Resour Res 43(5):1–19. https://doi.org/10.1029/2006WR005247
- 29. Hassan A, Jin S (2016) Water storage changes and balances in Africa observed by GRACE and hydrologic models. Geod Geodyn. https://doi.org/10.1016/j.geog.2016.03.002
- 30. Humphrey V, Gudmundsson L, Seneviratne SI (2016) Assessing global water storage variability from GRACE: trends, seasonal cycle, subseasonal anomalies and extremes. Surv Geophys 37(2):357–395. https://doi.org/10.1007/s10712-016-9367-1
- 31. Jin S, Feng G (2013) Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Global Planet Change 106:20–30. https://doi.org/10.1016/j.gloplacha.2013.02.008
- 32. Jin S, Chambers DP, Tapley BD (2010) Hydrological and oceanic effects on polar motion from GRACE and models. J Geophys Res 115(B2):B02403. https://doi.org/10.1029/2009JB006635
- 33. Jin S, Hassan AA, Feng GP (2012) Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models. J Geodyn 62:40–48. https://doi.org/10.1016/j.jog.2012.01.009
- 34. Kuang W, Chao BF, Chen J (2017) Decadal polar motion of the earth excited by the convective outer core from geodynamo simulations. J Geophys Res Solid Earth 122(10):8459–8473. https://doi.org/10.1002/2017JB014555
- 35. Lambeck K (1980) The earth’s variable rotation: geophysical causes and consequences. Cambridge University Press, Cambridge
- 36. Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res. https://doi.org/10.1029/2011WR011453
- 37. Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Peter J, Zeng X, Yang Z, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst 3(1):M03001. https://doi.org/10.1029/2011MS00045
- 38. Lettenmaier DP, Famiglietti JS (2006) Hydrology: water from on high. Nature 444:562–563. https://doi.org/10.1038/444562a
- 39. Meyrath T, van Dam T (2016) A comparison of interannual hydrological polar motion excitation from GRACE and geodetic observations. J Geodyn 99:1–9. https://doi.org/10.1016/j.jog.2016.03.011
- 40. Munk WH, MacDonald GJF (1960) The rotation of the Earth: a geophysical discussion. Cambridge University Press, New York
- 41. Naito I, Zhou Y-H, Sugi M, Kawamura R, Sato N (2000) Three-dimensional Atmospheric Angular Momentum Simulated by the Japan Meteorological Agency model for the period of 1955–1994. J Meteorol Soc Jpn 78(2):111–122. https://doi.org/10.2151/jmsj1965.78.2_111
- 42. Nastula J (1997) The regional atmospheric contributions to the polar motion and EAAM excitation functions. In: Segawa J, Fujimoto H, Okubo S (eds) Gravity, geoid and marine geodesy, international symposium, Tokyo, Japan, September 30–October 5, 1996, pp 281–288. https://doi.org/10.1007/978-3-662-03482-8_39
- 43. Nastula J, Ponte RM (1999) Further evidence for oceanic excitation of polar motion. Geophys J Int 139(1):123–130. https://doi.org/10.1046/j.1365-246X.1999.00930.x
- 44. Nastula J, Ponte RM, Salstein DA (2000) Regional signals in atmospheric and oceanic excitation of polar motion. In: Dick S, McCarthy D, Luzum B (eds) Polar motion: historical and scientific problems. In: ASP conference series, vol 208, Astronomical Society of the Pacific, San Francisco, pp 463–472
- 45. Nastula J, Ponte RM, Salstein DA (2007) Comparison of polar motion excitation series derived from GRACE and from analyses of geophysical fluids. Geophys Res Lett. https://doi.org/10.1029/2006gl02893
- 46. Nastula J, Kołaczek B, Salstein D (2008) Comparison of regional hydrological excitation of polar motion derived from hydrological models and the GRACE gravity field data. In: Soffel M, Capitaine N (eds) Proceedings Journées 2008 “Systèmes de RéférenceSpatio-temporels” and X. Lohrmann-Kolloquium, 22–24 September 2008, Dresden, Germany
- 47. Nastula J, Salstein DA, Kołaczek B (2009) Patterns of atmospheric excitation functions of polar motion from high-resolution regional sectors. J Geophys Res 114(B4):B04407. https://doi.org/10.1029/2008JB005605
- 48. Nastula J, Pasnicka M, Kolaczek B (2011) Comparison of the geophysical excitations of polar motion from the period 1980.0–2007.0. Acta Geophysica 59(3):561–577. https://doi.org/10.2478/s11600-011-0008-2
- 49. Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton PE (2010) Technical description of version 4.0 of the community land model (CLM). http://www.cesm.ucar.edu/models/cesm1.0/clm/CLM4_Tech_Note.pdf
- 50. Ponte RM, Stammer D, Marshall J (1998) Oceanic signals in observed motions of the earth’s pole of rotation. Nature 391:476–479. https://doi.org/10.1038/35126
- 51. Reager JT, Thomas BF, Famiglietti JS (2014) River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat Geosci 7(8):588–592
- 52. Rodell M, Beaudoing KH (2007a) GLDAS VIC land surface model L4 monthly 1.0 × 1.0 degree, version 001. Technical report, Goddard Earth Sciences Data and Information Services Center (GESDISC), Greenbelt
- 53. Rodell M, Beaudoing KH (2007b) GLDAS mosaic land surface model L4 monthly 1.0 × 1.0 degree, version 001. Technical report. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt
- 54. Rodell M, Beaudoing KH (2007c) GLDAS CLM land surface model L4 monthly 1.0 × 1.0 degree, version 001. Technical report, Goddard Earth Sciences Data and Information Services Center (GESDISC), Greenbelt
- 55. Rodell M, Beaudoing KH (2013) GLDAS NOAH land surface model L4 monthly 1.0 × 1.0 degree, version 001. Technical report, Goddard Earth Sciences Data and Information Services Center (GESDISC), Greenbelt
- 56. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteor Soc 85(3):381–394. https://doi.org/10.1175/BAMS-85-3-381
- 57. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. https://doi.org/10.1038/nature08238
- 58. Rui H, Beaudoing H (2018) README Document for NASA GLDAS Version 2 Data Products, NASA’s Goddard Space Flight Center, http://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS/GLDAS_NOAH10_M.2.0/doc/README_GLDAS2.pdf
- 59. Rzepecka Z, Birylo M, Kuczynska-siehien J (2017) Analysis of groundwater level variations and water balance in the area of the Sudety mountains. Acta Geodynamica et Geomaterialia 3(187):307–315. https://doi.org/10.13168/AGG.2017.0014
- 60. Sakumura C, Bettadpur S, Bruinsma S (2014) Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys Res Lett 41(5):1389–1397. https://doi.org/10.1002/2013GL058632
- 61. Salstein DA, Rosen RD, Kann DM, Miller AJ (1993) The sub-bureau for atmospheric angular momentum of the international earth rotation service: a meteorological data centre with geodetic applications. Bull Am Meteor Soc 74(1):67–80. https://doi.org/10.1175/1520-0477(1993)074%3c0067:TSBFAA%3e2.0.CO;2
- 62. Scanlon BR, Zhang Z, Save H, Sun AY, Müller Schmied H, van Beek LPH, Wiese DN, Wada Y, Long D, Reedy RC, Longuevergne L, Döll P, Bierkens MFP (2018) Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1704665115
- 63. Seoane L, Nastula J, Bizouard C, Gambis D (2011) Hydrological excitation of polar motion derived from GRACE gravity field solutions. Int J Geophys. https://doi.org/10.1155/2011/174396
- 64. Stammer D, Wunsch C, Fukumori I, Marshall J (2002) State estimation improves prospects for ocean research. EOS Trans AGU 83(27):289–295. https://doi.org/10.1029/2002EO000207
- 65. Suarez MJ, Bloom S, Dee D (2005) Energy and water balance calculations in the mosaic LSM. NASA Tech Memo, 26, https://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf
- 66. Sun AY, Scanlon BR, AghaKouchak A, Zhang Z (2017) Using GRACE satellite gravimetry for assessing large-scale hydrologic extremes. Remote Sens. https://doi.org/10.3390/rs9121287
- 67. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33(8):1–4. https://doi.org/10.1029/2005gl025285
- 68. Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res 113:B08410. https://doi.org/10.1029/2007JB005338
- 69. Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res. https://doi.org/10.1029/2006WR005779
- 70. Tangdamrongsub N, Ditmar PG, Steele-Dunne SC, Gunter BC, Sutanudjaja EH (2016) Assessing total water storage and identifying flood events over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations combined with hydrological models. Remote Sens Environ 181:162–173. https://doi.org/10.1016/j.rse.2016.03.030
- 71. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-11-00094.1
- 72. Thomas M (2002) Ocean induced variations of Earth’s rotation results from a simultaneous model of global circulation and tides. Ph.D. dissertation, University of Hamburg, Germany
- 73. Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41:1537–1545. https://doi.org/10.1002/2014GL060285
- 74. Velicogna I, Sutterley TC, Van Den Broeke MR (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys Res Lett 41(22):8130–8137. https://doi.org/10.1002/2014GL061052
- 75. Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20):1–5. https://doi.org/10.1029/2010GL044571
- 76. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30229. https://doi.org/10.1029/98JB02844
- 77. Winska M, Nastula J, Kołaczek B (2016) Assessment of the global and regional land hydrosphere and its impact on the balance of the geophysical excitation function of polar motion. Acta Geophys 64(1):1–23. https://doi.org/10.1515/acgeo-2015-0041
- 78. Winska M, Nastula J, Salstein DA (2017) Hydrological excitation of polar motion by different variables from the GLDAS model. J Geodesy 17:7110. https://doi.org/10.1007/s00190-017-1036-8
- 79. Wu W-Y, Lan C-W, Lo M-H, Reager JT, Famiglietti JS (2015) Increases in the annual range of soil water storage at northern middle and high latitudes under global warming. Geophys Res Lett. https://doi.org/10.1002/2015gl064110
- 80. Yang T, Wang C, Yu Z, Xu F (2013) Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage. Glob Planet Change 109:30–37. https://doi.org/10.1016/j.gloplacha.2013.07.005
- 81. Youm K, Seo KW, Jeon T, Na SH, Chen J, Wilson CR (2017) Ice and groundwater effects on long term polar motion (1979–2010). J Geodyn 106:66–73. https://doi.org/10.1016/j.jog.2017.01.008
- 82. Zhang L, Dobslaw H, Dahle C, Sasgen I, Thomas M (2015) Validation of MPI-ESM decadal hindcast experiments with terrestrial water storage variations as observed by the GRACE satellite mission. Meteorol Z 25(6):685–694. https://doi.org/10.1127/metz/2015/0596
- 83. Zhang L, Dobslaw H, Thomas M (2016) Globally gridded terrestrial water storage variations from GRACE satellite gravimetry for hydrometeorological applications. Geophys J Int. https://doi.org/10.1093/gji/ggw153
- 84. Zhang L, Dobslaw H, Stacke T, Güntner A, Dill R, Thomas M (2017) Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations. Hydrol Earth Syst Sci 21:821–837. https://doi.org/10.5194/hess-21-821-2017
- 85. Zhou YH, Chen JL, Liao XH, Wilson CR (2005) Oceanic excitations on polar motion: a cross comparison among models. Geophys J Int 162(2):390–398. https://doi.org/10.1111/j.1365-246X.2005.02694.x
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a72b8b0-b89b-41c9-bcaf-6cd668032a13