PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Evaluation of the contact angle of hydrophobised lightweight-aggregate concrete with sewage sludge

Identyfikatory
Warianty tytułu
PL
Ocena kąta zwilżania hydrofobizowanego keramzytobetonu z osadem ściekowym
Języki publikacji
EN
Abstrakty
EN
The aim of the research presented in the paper was to evaluate the feasibility of using hydrophobic preparations based on organosilicon compounds for protection treatment of lightweight aggregates modified with municipal sewage sludge. Issues related to the wettability of the surface layer of hydrophobised lightweight-aggregate concrete supplemented with sewage sludge are discussed in the paper. The experimental part of the study is focused on the physical and mechanical characteristics of lightweight-aggregate concrete and the effect of two hydrophobic preparations on the contact angle of the material. The contact angle for lightweight concrete (θw) was determined as a function of time using one measurement liquid. The hydrophobic coatings in the structure of lightweight concrete modified with sewage sludge were shown using electron microscopy. The investigations demonstrated the effectiveness of hydrophobisation of porous lightweight concretes. On the hydrophobic surfaces, the contact angles decreased with time and depended on the preparations used. The results of the research confirm the possibility to produce lightweight aggregate-concretes modified with sewage sludge with appropriate surface protection against external moisture.
PL
Celem badań przedstawionych w pracy była ocena efektu zastosowania preparatów hydrofobowych opartych o substancje krzemoorganiczne do zabezpieczania lekkich bloczków keramzytowych z dodatkiem osadów ściekowych przed wilgocią. W artykule omówiono zagadnienia związane ze zwilżalnością warstwy wierzchniej hydrofobizowanego keramzytobetonu modyfikowanego osadem ściekowym. Część doświadczalna pracy dotyczy cech fizycznych i mechanicznych keramzytobetonu oraz wpływu dwóch preparatów hydrofobowych na kąt zwilżania materiału. Wyznaczono kąt zwilżania betonu lekkiego (θw) w funkcji czasu przy użyciu jednej cieczy pomiarowej. Przedstawiono powłoki hydrofobowe w strukturze betonu lekkiego z osadem przy użyciu mikroskopii elektronowej. Na podstawie badań określono skuteczność hydrofobizacji porowatych betonów lekkich. Dla użytych substancji hydrofobizujących kąty zwilżania zmniejszały się z upływem czasu, a zmiana zależała od zastosowanych preparatów. Wyniki przeprowadzonych badań potwierdziły możliwość poprawy parametrów betonów lekkich wraz z odpowiednim zabezpieczeniem powierzchniowym przed wilgocią z zewnątrz.
Rocznik
Strony
625--635
Opis fizyczny
Bibliogr. 47 poz., wykr., rys., tab., fot.
Twórcy
  • Department of Building Construction, Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
  • Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
autor
  • Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40a, 20-618 Lublin, Poland
autor
  • Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40a, 20-618 Lublin, Poland
Bibliografia
  • [1] Directive 86/278/EEC. Council directive on the protection of the environment and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities. 1986;L(181):6-12. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31986L0278.
  • [2] Wos P, Dyka M, Korniluk M, Lagod G. Wpływ modernizacji urządzeń miejskiej oczyszczalni ścieków „Hajdów” na przebieg procesu oczyszczania ścieków oraz ilość powstających odpadów [Influence of “Hajdow” wastewater treatment plant modernization on wastewater purification process and amount of emerging waste]. Proc ECOpole. 2007;1(1-2):277-281.
  • [3] Werle S, Dudziak M. Gaseous fuels production from dried sewage sludge via air gasification. Waste Manage Res. 2014;32(7):601-607. DOI: 10.1177/0734242X14536460.
  • [4] Werle S, Wilk RK. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew Ener. 2010;35(9):1914-1919. DOI: 10.1016/j.renene.2010.01.019.
  • [5] Song U, Lee EJ. Environmental and economical assessment of sewage sludge compost application on soil and plants in a landfill. Resour Conser Recyc. 2010;54(12):1109-1116. DOI: 10.1016/j.resconrec.2010.03.005.
  • [6] Frac M, Oszust K, Lipiec J, Jezierska-Tys S, Oluchi Nwaichi E. Soil microbial functional and fungal diversity as influenced by municipal sewage sludge accumulation. Int J Environ Res Pub Health. 2014;11:8891-8908. DOI: 10.3390/ijerph110908891.
  • [7] Singh RP, Agrawal M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 2008;28(2):347-358. DOI: 10.1016/j.wasman.2006.12.010.
  • [8] Gunning PJ, Hills CD, Carey PJ. Production of lightweight aggregate from industrial waste and carbon dioxide. Waste Manage. 2009;29(10):2722-2728. DOI: 10.1016/j.wasman.2009.05.021.
  • [9] Gonzáles-Corrochano B, Alonso-Azcárate J, Rodas M, Luque FJ, Barrenechea JF. Microstructure and mineralogy of lightweight aggregates produced from washing aggregate sludge, fly ash, and used motor oil. Cem Concr Composit. 2010;32(9):694-707. DOI: 10.1016/j.cemconcomp.2010.07.014.
  • [10] Suchorab Z, Barnat-Hunek D, Franus M. Analysis of heat-moisture properties of hydrophobised gravelite-concrete with sewage sludge. Proc ECOpole (in print).
  • [11] Lee TC, Lin KL, Su XW, Lin KK. Recycling CMP sludge as a resource in concrete. Constr Build Mater. 2012;30:243-251. DOI: 10.1016/j.conbuildmat.2011.11.019.
  • [12] Tay JH, Show KY. Resources recovery of sludge as a building and construction material - a future trend in sludge management. Water Sci Technol. 1997;36(11):259-266. DOI: 10.1016/S0273-1223(97)00692-6.
  • [13] Youm KS, Jeong YJ, Han ESH, Yun TS. Experimental investigation on annual changes in mechanical properties of structural concretes with various types of lightweight aggregates. Constr Build Mater. 2014;73:442-451. DOI: 10.1016/j.conbuildmat.2014.09.044.
  • [14] Monteiro SN, Alexander J, Margem JI, Sánchez R, Vieira CMF. Incorporation of sludge waste from water treatment plant into red ceramic. Constr Build Mater. 2008;22(6)1281-1287. DOI: 10.1016/j.conbuildmat.2007.01.013.
  • [15] Aldred JM, Swaddiwudhipong S, Lee SL, Wee TH. The effect of initial moisture content on water transport in concrete containing a hydrophobic admixture. Mag Concr Res. 2001;53(2):127-134. DOI: 10.1680/macr.53.2.127.39509.
  • [16] Demirba R, Gül R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem Concr Res. 2003;33(5):723-727. DOI:10.1016/S0008-8846(02)01032-3.
  • [17] Kim HK, Jeon JH, Lee HK. Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr Build Mater. 2012;29:193-200. DOI: 10.1016/j.conbuildmat.2011.08.067.
  • [18] Suchorab Z, Barnat-Hunek D, Sobczuk H. Influence of moisture on heat conductivity coefficient of aerated concrete. Ecol Chem Eng S. 2011;18(1):111-120. http://tchie.uni.opole.pl/freeECE/S_18_1/Suchorab_18(S1).pdf.
  • [19] Suchorab Z, Widomski M, Lagod G, Sobczuk H. Capillary rise phenomenon in aerated concrete, monitoring and simulations. Proc ECOpole. 2010;4(2):285-290. http://tchie.uni.opole.pl/ecoproc10b/SuchorabWidomski_PECO10_2.pdf.
  • [20] Lo TY, Cui HZ, Tang WC, Leung WM. The effect of aggregate absorption on pore area at the interfacial zone of lightweight concrete. Constr Build Mater. 2008;22(4):135-142. DOI: 10.1016/j.conbuildmat.2006.10.011.
  • [21] Tittarelli F. Oxygen diffusion through hydrophobic cement-based materials. Cem Concr Res. 2009;39(10):924-928. DOI: 10.1016/j.cemconres.2009.06.021.
  • [22] Suchorab Z, Barnat-Hunek D, Smarzewski P, Pavlík Z, Černý R. Free of volatile organic compounds protection against moisture in building materials. Ecol Chem Eng S. 2014;21(3):401-411. DOI: 10.2478/eces-2014-0029.
  • [23] Baltazar L, Santana J, Lopes B, Correia JR, Rodrigues MP. Superficial protection of concrete with epoxy resin impregnations: influence of the substrate roughness and moisture. Mater Struct. 2015;48:1931-1946. DOI: 10.1617/s11527-014-0284-9.
  • [24] Osterholtz FD, Pohl ER. Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review. J Adhes Sci Technol. 1992;6(2):127-149. DOI: 10.1163/156856192X00106.
  • [25] Czarnecki L. Polymer concretes. Cem Wap Bet. 2010;15(2):63-85.
  • [26] Felekoğlu B. A method for improving the early strength of pumice concrete blocks by using alkyl alkoxy silane (AAS). Constr Build Mater. 2012;28(1):305-310. DOI: 10.1016/j.conbuildmat.2011.07.026.
  • [27] Zhu YG, Kou SC, Poon CS, Dai JG, Li QY. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cem Concr Composit. 2013;35(1)32-38. DOI: 10.1016/j.cemconcomp.2012.08.008.
  • [28] Xiong G, Luo B, Wu X, Li G, Chen L. Influence of silane coupling agent on quality of interfacial transition zone between concrete substrate and repair materials. Cem Concr Composit. 2006;28(1):97-101. DOI: 10.1016/j.cemconcomp.2005.09.004.
  • [29] Chmielewska B, Czarnecki L, Sustersic J, Zajc A. The influence of silane coupling agents on the polymer mortar. Cem Concr Composit. 2006;28(9):803-810. DOI: 10.1016/j.cemconcomp.2006.04.005.
  • [30] Klisinska-Kopacz A, Tislova R. Effect of hydrophobization treatment on the hydration of repair Roman cement mortars. Constr Build Mat. 2012;35:735-740. DOI: 10.1016/j.conbuildmat.2012.05.002.
  • [31] MacMullen J, Zhang Z, Rirsch E, Dhakal HN, Bennett N. Brick and mortar treatment by cream emulsion for improved water repellence and thermal insulation. Ener Build. 2011;43(7):1560-1565. DOI:10.1016/j.enbuild.2011.02.014.
  • [32] Matziaris K, Stefanidou M, Karagiannis G. Impregnation and superhydrophobicity of coated porous low-fired clay building materials. Progr Organic Coat. 2011;72(1-2):181-192. DOI: 10.1016/2011.03.012.
  • [33] Rudawska A. Selected issues on establishing adhesion bonds - homogeneous and hybrid. Lublin: Monographs Lublin University of Technology; 2013.
  • [34] PN-EN 828:2000 Adhesives. Determining wettability by means of measuring the contact angle and critical surface tension of solid. http://sklep.pkn.pl/pn-en-828-2000p.html.
  • [35] Lugscheider E, Bobzin K. The influence on surface free energy of PVD-coatings. Surf Coat Technol. 2001;142:755-760. DOI: 10.1016/S0257-8972(01)01315-9.
  • [36] Vedantam S, Panchagnula MV. Constitutive modeling of contact angle hysteresis. J Colloid Interf Sci. 2008;321(2):393-400. DOI: 10.1016/j.jcis.2008.01.056.
  • [37] Courard L, Piotrowski T, Garbacz A. Near-to-surface properties affecting bond strength in concrete repair. Cem Concr Composit. 2014;46:73-80. DOI: 10.1016/j.cemconcomp.2013.11.005.
  • [38] Żenkiewicz M, Rytlewski P, Czupryńska P, Polański J, Karasiewicz T, Engelgard W. Contact angle and surface free energy of electron-beam irradiated polymer composites. Polimery. 2008;53(6):446-451.
  • [39] Shang J, Flury M, Harsh JB, Zollars RL. Comparison of different methods to measure contact angles of soil colloids. J Colloid Interf Sci. 2008;328(8):299-307. DOI:10.1016/j.jcis.2008.09.039.
  • [40] Klein NS, Bachmann J, Aguado A, Toralles-Carbonari B. Evaluation of the wettability of mortar component granular materials through contact angle measurements. Cem Concr Res. 2012;42(2):1611-1620. DOI: 10.1016/j.cemconres.2012.09.001.
  • [41] EN 206-1:2003/A2:2006P Concrete. Specification, performance, production and conformity. http://sklep.pkn.pl/pn-en-206-1-2003-a2-2006p.html.
  • [42] PN-B-06265:2004 Polish National Supplement: PN-EN 206-1:2003 Concrete. Specification, performance, production and conformity. http://sklep.pkn.pl/pn-en-206-2014-04e.html.
  • [43] EN 1936:2010 Natural stone test methods - Determination of real density and apparent density, and of total and open porosity. http://sklep.pkn.pl/pn-en-1936-2010p.html.
  • [44] PN-EN 1389:2005 Polish National Supplement: PN-EN 206-1:2003 Concrete. Specification, performance, production and conformity. http://sklep.pkn.pl/pn-en-1389-2005p.html.
  • [45] PN-EN 12390-7:2011P Testing hardened concrete. Density of hardened concrete. http://sklep.pkn.pl/pn-en-12390-7-2011p.html.
  • [46] PN-B-06250:1988 Ordinary concrete. http://sklep.pkn.pl/pn-b-06250-1988p.html.
  • [47] Rudawska A, Jacniacka E. Analysis of determining surface free energy uncertainty with the Owens-Wendt method. Intern J Adhes Adhesives. 2009;29:451-457. DOI: 10.1016/j.ijadhadh.2008.09.008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a70e614-b958-4197-bd3d-7ca05905608c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.