Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The energy principle is applied in the context of elastic behavior of materials. Simple power-law is used to adjust the material properties in the thickness direction of each wall of FGM box beam. Ritz's method is adopted to obtain the nonlinear coupled equilibrium equations, and then the critical loads are obtained by means of the corresponding tangent stiffness matrix. A Finite Element simulation performed with the code ABAQUS software is used to verify the efficiency and accuracy of the present approach in lateral torsional buckling predictions. The effects of the power-law index and skin–core-skin thickness ratios on the critical loads of FG sandwich box beams are presented through several case studies. Moreover, the numerical solutions show that the previous effects play a significant role in the stability analysis of FG sandwich box beams.
Czasopismo
Rocznik
Tom
Strony
art. no. e140, 2024
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Department of Civil Engineering, University of Ibn Khaldoun, BP 78 Zaaroura, 14000 Tiaret, Algeria
- Laboratoire de L’Ingénierie Mécanique, Matériaux et Structures-LIMMaS, Université de Tissemsilt, Ben Hamouda, BP 38004, Tissemsilt, Algeria
- Department of Civil Engineering, University of Ibn Khaldoun, BP 78 Zaaroura, 14000 Tiaret, Algeria
- Laboratoire de L’Ingénierie Mécanique, Matériaux et Structures-LIMMaS, Université de Tissemsilt, Ben Hamouda, BP 38004, Tissemsilt, Algeria
autor
- Laboratoire des Structures et Matériaux Avancés Dans Le Génie Civil et Travaux Publics, Université Djillali Liabes, Sidi Bel Abbes, Algérie
autor
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Eastern Province, Saudi Arabia
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
- Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
autor
- Department of Civil Engineering, College of Engineering, King Khalid University, 61421 Abha, Saudi Arabia
autor
- Department of Civil Engineering, College of Engineering, King Khalid University, 61421 Abha, Saudi Arabia
Bibliografia
- 1. Yamanouti M Proceedings of the First International Symposiumon Functionally Gradient Materials, FGM ’90, October 8–9, 1990, Hotel Sendai Plaza, Sendai, Japan, Organized and Sponsored by Functionally Gradient Materials Forum. 1990.
- 2. Koizumi M. FGM activities in Japan. Compos Part B Eng.1997;28(1–2):1–4. https:// doi. org/ 10. 1016/ S1359- 8368(96)00016-9.
- 3. Pindera M-J, Arnold S, Aboudi J, et D. Hui (1994) Use of composites in functionally graded materials, Compos Eng, 4: 1–145.
- 4. Markworth AJ, Ramesh KS, et Parks WP (1995) Modelling studies applied to functionally graded materials, J Mater Sci 30(9):2183-2193, https://doi.org/10.1007/BF01184560.
- 5. Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, et Ford RGÉd. (1999) Functionally Graded Materials, vol. 5. in Materials Technology Series, vol. 5. Boston, MA: Springer US, https://doi.org/10.1007/978-1-4615-5301-4.
- 6. Paulino GH, Jin Z-H, et Dodds RH (2003) Failure of Function-ally Graded Materials. In: Comprehensive Structural Integrity, Elsevier, p 607-644. https:// doi. org/ 10. 1016/ B0- 08- 043749- 4/02101-7.
- 7. Yaylacı M, Abanoz M, Yaylacı et al. (2022) Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEMand MLP) methods. Arch Appl Mech 92: 1953–1971. https://doi.org/10.1007/s00419-022-02159-5.
- 8. Yaylaci M, Şabano BŞ, Özdemir ME, Birinci A (2022) Solvingthe contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods. Struct Eng Mech 82: 401–416. https://doi.org/10.12989/sem.2022.82.3.401.
- 9. Turan M, Uzun Yaylacı E, Yaylacı M. Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods. Arch Appl Mech. 2023;93:1351–72. https://doi.org/10.1007/s00419-022-02332-w.
- 10. Yaylaci M, Yaylaci EY, Ozdemir ME, Ozturk S, Sesli H (2023) Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods, Steel and Com-posite Structures, 46(4): 565–575. https://doi.org/10.12989/scs.2023.46.4.565.
- 11. Vlasov VZ (1962) Thin Walled Elastic Beams, Moscow, French Translation, Pieces Longuesen Voiles Minces, Eyrolles. Eyrolles.
- 12. Kim YY et Kim JH (1999) Thin-walled closed box beam element for static and dynamic analysis, Int J Numer Meth Engng, 45(4):473-490. https://doi.org/10.1002/(sici)1097-0207(19990610)45:4<473::aid-nme603>3.0.co;2-b.
- 13. Paulsen F et Welo T (2001) Cross-sectional deformations of rectangular hollow sections in bending: Part II—analytical models, Int J Mech Sci 43(1): 131–152, https://doi.org/10.1016/s0020-7403(99)00107-1.
- 14. Ruta GC, Varano V, Pignataro M, et Rizzi NL A beam model for the flexural–torsional buckling of thin-walled members with some applications, Thin-Walled Struct. 46(7–9): 816–822, 2008, https://doi.org/10.1016/j.tws.2008.01.020.
- 15. Pignataro M, Rizzi N, Ruta G, et Varano V (2010) The effects of warping constraints on the buckling of thin-walled structures. J Mech Mater Struct 4(10): 1711–1727 https://doi.org/10.2140/jomms.2009.4.1711.
- 16. Erkmen RE et Attard MM (2011) Lateral-torsional buckling analysis of thin-walled beams including shear and prebuckling deformation effects, Int J Mech Sci 53(10): 918–925 https://doi.org/10.1016/j.ijmecsci.2011.08.006.
- 17. Gonçalves R. A geometrically exact approach to lateral-torsional buckling of thin-walled beams with deformable cross-section. Comput Struct. 2012;106–107:9–19. https://doi.org/10.1016/j.compstruc.2012.03.017.
- 18. Lofrano E, Paolone A, et Ruta G (2013) A numerical approach for the stability analysis of open thin-walled beams, Mech Res Commun 48: 76–86, https://doi.org/10.1016/j.mechrescom.2012.12.008.
- 19. Erkmen RE. Shear deformable hybrid finite-element formulation for buckling analysis of thin-walled members. Finite Elem Anal Des. 2014;82:32–45. https://doi.org/10.1016/j.finel.2013.12.005.
- 20. Fraternaliet F, Feo L (2000) On a moderate rotation theory of thin-walled composite beams, Compos Part B Eng 31(2): 141–158https://doi.org/10.1016/S1359-8368(99)00079-7.
- 21. Sapkáset Á, Kollár LP (2002) Lateral-torsional buckling of composite beams, Int J Solids Struct 39(11): 2939–2963 https://doi.org/10.1016/s0020-7683(02)00236-6.
- 22. Machado SP, Cortínez VH. Lateral buckling of thin-walled composite bisymmetric beams with prebuckling and shear deformation. Eng Struct. 2005;27(8):1185–96. https://doi.org/10.1016/j.engstruct.2005.02.018.
- 23. Machado SP, Cortínez VH. Non-linear model for stability of thin-walled composite beams with shear deformation. Thin-Walled Struct. 2005;43(10):1615–45. https://doi.org/10.1016/j.tws.2005.06.008.
- 24. Kim N-I, Shin DK, et Kim M-Y (2008) Flexural–torsional buck-ling loads for spatially coupled stability analysis of thin-walled composite columns, Adv Eng Softw 39(12): 949–961 https://doi.org/10.1016/j.advengsoft.2008.03.001.
- 25. Librescu L, Oh S-Y, et. Song O (2005) Thin-Walled Beams Made of Functionally Graded Materials and Operating in a High Temperature Environment: Vibration and Stability, J Therm Stress 28(6–7): 649–712 https://doi.org/10.1080/01495730590934038.
- 26. Piovan MT, et Machado SP Thermoelastic dynamic stability of thin-walled beams with graded material properties Thin-Walled Struct., vol. 49, n o 3, p. 437-447, 2011, doi: https://doi.org/10.1016/j.tws.2010.11.002.
- 27. Ziane N, Meftah SA, Belhadj HA, Tounsi A, et Bedia EAA (2013) Free vibration analysis of thin and thick-walled FGM box beams, Int J Mech Sci 66: 273–282 https://doi.org/10.1016/j.ijmecsci.2012.12.001.
- 28. Carvalho EC, Gonçalves PB, Rega G, et Del Prado ZJGN (2014) Nonlinear nonplanar vibration of a functionally graded box beam, Meccanica 49(8): 1795–1819 https:// doi. org/ 10. 1007/s11012-013-9863-z.
- 29. Mashat DS, Carrera E, Zenkour AM, Al Khateeb SA, et Filippi M Free vibration of FGM layered beams by various theories and finite elements », Compos. Part B Eng., vol. 59, p. 269-278, 2014,doi: https://doi.org/10.1016/j.compositesb.2013.12.008.
- 30. D. Lanc, G. Turkalj, et I. Pesic, « Global buckling analysis model for thin-walled composite laminated beam type structures », Compos. Struct., vol. 111, p. 371-380, 2014, doi: https://doi.org/10.1016/j.compstruct.2014.01.020.
- 31. D. Lanc, T. P. Vo, G. Turkalj, et J. Lee, « Buckling analysis of thin-walled functionally graded sandwich box beams », Thin-Walled Struct., vol. 86, p. 148-156, 2015, doi: https://doi.org/10.1016/j.tws.2014.10.006.
- 32. Ziane N. Meftah, Sid Ahmed, Ruta, Giuseppe, Tounsi, Abdeloua-hed, et AddaBedia, El Abbas, « Investigation of the Instability of FGM box beams ». Struct Eng Mech. 2015;54(3):579–95. https://doi.org/10.12989/SEM.2015.54.3.579.
- 33. N.-I. Kim et J. Lee, « Geometrically nonlinear coupled analysis of thin-walled Al/Al2O3 FG sandwich box beams with single anddouble cells », Acta Mech., vol. 229, n o 11, p. 4677-4699, 2018, doi: https://doi.org/10.1007/s00707-018-2238-8.
- 34. W.-L. Ma, F. Peng, H. Wang, et X.-F. Li, « Free vibration and buckling of functional graded box beams and the effect of the cross-sectional warping shape », Mech. Adv. Mater. Struct., p.1-13, 2023, doi: https://doi.org/10.1080/15376494.2023.2243275.
- 35. Abaqus Standard User's Manual, Version 6.4. Hibbit, Karlsson and Sorensen Inc., Pawtucket, RI, USA, 2003 (Abaqus).
- 36. Saoula A, Meftah SA, Mohri F, Daya EM. Lateral buckling of box beam elements under combined axial and bending loads. J Constr Steel Res. 2016;116:141–55. https://doi.org/10.1016/j.jcsr.2015.09.009.
- 37. A. Saoula, S. A. Meftah. « Effect of Shear and Distortion Deformations on Lateral Buckling Resistance of Box Elements in the Framework of Eurocode 3», Int. J.l of St. Struct. 2019; 19(4):1302–16.
- 38. Kim YY, Kim Y. A one-dimensional theory of thin-walled curved rectangular box-beam under torsion and out-of-plane bending. Int J for Num Met Eng. 2002;53:1675–93. https://doi.org/10.1002/nme.357.
- 39. Reddy JN. « Mechanics of laminated composite plates and shells:theory and analysis », Boca Raton. FL: CRC Press; 2004.
- 40. Zenkour AM. A comprehensive analysis of functionally graded sandwich plates: Part1-Deflection and stresses. Int J Solids Struct.2005;42:5224–42. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a6d23ca-a339-4f8a-b1c7-0b6f10de1786
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.