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Minimum energy control of descriptor discrete-time
linear systems by the use of Weierstrass-Kronecker

decomposition

TADEUSZ KACZOREK and KAMIL BORAWSKI

The minimum energy control problem for the descriptor discrete-time linear systems by the
use of Weierstrass-Kronecker decomposition is formulated and solved. Necessary and sufficient
conditions for the reachability of descriptor discrete-time linear systems are given. A procedure
for computation of optimal input and a minimal value of the performance index is proposed and
illustrated by a numerical example.
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1. Introduction

A dynamical system is called positive if its trajectory starting from any nonnegative
initial condition state remains forever in the positive orthant for all nonnegative inputs.
An overview of state of the art in positive system theory is given in the monographs
[8, 17] and in the papers [11, 18-22]. Models having positive behavior can be found in
engineering, economics, social sciences, biology and medicine, etc.

Descriptor (singular) linear systems were considered in many papers and books [1-7,
9, 19, 28-30]. The positive standard and descriptor systems and their stability have been
analyzed in [17, 21]. Descriptor positive discrete-time and continuous-time nonlinear
systems have been analyzed in [11].

The minimum energy control problem for standard linear systems has been formu-
lated and solved by J. Klamka [24-26] and for 2D linear systems with variable coeffi-
cients in [24]. The relative controllability and minimum energy control problem of linear
systems with distributed delays in control has been investigated by Klamka in [27]. The
minimum energy control of fractional positive continuous-time linear systems has been
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addressed in [14] and for positive discrete-time linear systems in [10, 13, 15]. The mini-
mum energy control problem for positive electrical circuits has been investigated in [16].

In this paper the minimum energy control problem for descriptor discrete-time lin-
ear systems by the use of Weierstrass-Kronecker decomposition will be formulated and
solved. The paper is organized as follows. In section 2 the Weierstrass-Kronecker de-
composition theorem is recalled and the necessary and sufficient conditions for the
reachability of the descriptor discrete-time linear systems are given. In section 3 the
minimum energy control problem of the descriptor discrete-time linear systems by the
use of Weierstrass-Kronecker decomposition is formulated and solved. The procedure of
finding of the optimal input sequences is proposed and illustrated by numerical example
in section 4. Concluding remarks are given in section 5.

The following notation will be used: ℜ – the set of real numbers, ℜn×m – the set
of n×m real matrices, ℜn×m

+ – the set of n×m matrices with nonnegative entries and
ℜn

+ = ℜn×1
+ , In – the n×n identity matrix, Z+ – the set of nonnegative integers.

2. Preliminaries

Consider the descriptor discrete-time linear system

Exi+1 = Axi +Bui, i ∈ Z+ = {0,1, ...}, (1)

where xi ∈ ℜn, ui ∈ ℜm are the state and input vectors and A ∈ ℜn×n, B ∈ ℜn×m. It is
assumed that detE = 0 and

det[Ez−A] ̸= 0 for some z ∈C (the field of complex numbers). (2)

It is well-known [12, 23] that if (2) holds then there exist nonsingular matrices P,Q ∈
ℜn×n such that

P[Ez−A]Q =

[
In1z−A1 0

0 Nz− In2

]
, A1 ∈

n1×n1
Re , N ∈

n2×n2
Re , (3)

where n1 = det{det[Ez−A]}, n2 = n−n1 and N is the nilpotent matrix with the index µ,
i.e. Nµ−1 ̸= 0, Nµ = 0.

The matrices P and Q can be computed using procedures given in [12, 23, 29].
Premultiplying (1) by the matrix P and introducing the new state vector

x̄i =

[
x̄1,i

x̄2,i

]
= Q−1xi, x̄1,i ∈ℜn1 , x̄2,i ∈ℜn2 (4)

and using (4) we obtain

PEQQ−1xi+1 = PAQQ−1xi +PBui (5)
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and
x̄1,i+1 = A1x̄1,i +B1ui, (6a)

Nx̄2,i+1 = x̄2,i +B2ui, (6b)

where

PB =

[
B1

B2

]
, B1 ∈ℜn1×m, B2 ∈ℜn2×m. (6c)

Theorem 1 The solution x̄1,i of the equation (6a) has the form

x̄1,i = Ai
1x̄10 +

i−1

∑
k=1

Ai−k−1
1 B1uk. (7)

Proof The proof is given in [12].

Theorem 2 The solution x̄2,i of the equation (6b) for zero initial conditions x̄20 = 0 has
the form

x̄2,i =−
µ−1

∑
k=0

NkB2ui+k. (8)

Proof The proof is given in [12].

Definition 1 The descriptor discrete-time linear system (1) is called reachable in q
steps (q ¬ n) if for every given final state x f ∈ ℜn there exists an input sequence
u0,u1, . . . ,uq−1 which steers the state of the system from zero initial condition x0 = 0 to
x f .

Theorem 3 The descriptor discrete-time linear system (1) is reachable in q steps if and
only if one of the equivalent conditions is satisfied

1) Im[Es−A]+ ImB = ℜn for all s ∈C and ImE + ImB = ℜn (9)

2)
rank[ B1 A1B1 · · · An1−1

1 B1 ] = n1, n1 6 q,

rank[ B2 NB2 · · · Nµ−1B2 ] = n2, n2 6 q,
(10)

where Im denotes the image and n1, n2 are defined by (3).

Proof The proof is given in [12].
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3. Problem formulation and its solution

Consider the descriptor discrete-time linear system (1). If the system is reachable in q
steps, then usually there exists many different input sequences ui ∈ℜm, i= 0,1, . . . ,q−1
that steers the state of the system from x0 = 0 to x f . Among these input sequences we
are looking for the sequence ui ∈ℜm, i = 0,1, . . . ,q−1 that minimizes the performance
index

I(u) =
q−1

∑
k=0

uT
k Q̃uk, (11)

where Q̃ ∈ℜm×m is a symmetric defined matrix.
From the block-diagonal structure of matrices PEQ and PAQ it follows that min-

imum energy control problem can be applied to both subsystems (6) separately. The
minimum energy control problem can be stated as follows.

Given the matrices A1 ∈ℜn1×n1 , B1 ∈ℜn1×m, N ∈ℜn2×n2 , Q̃ ∈ℜm×m, of the perfor-

mance matrix (11) and x f ∈ℜn, find an input sequence ui =

[
u1,k

u2, j

]
∈ℜ(l+µ)m, where

l+µ = q, u1,k ∈ℜlm, k = 0,1, . . . , l−1 and u2, j ∈ℜµm, j = 0,1, . . . ,µ−1 that steers the
state vector from x0 = 0 to x f and minimizes the performance index (11).

Let us consider the subsystem (6a). To solve the problem we define the matrix

Wl = RlQ̃−1
1 RT

l ∈ℜn1×n1 , (12)

where Rl is the reachability matrix defined by

Rl = [ B1 A1B1 · · · An1−1
1 B1 ] (13)

and
Q̃1 = blockdiag[ Q̃−1

1 · · · Q̃−1
1 ] ∈ℜlm×lm. (14)

If the system (1) is reachable in q steps then the input sequence

ul =


ul−1

ul−2
...

u0

= Q̃−1
1 RT

l W−1
l x̄1, f ∈ℜlm (15)

steers the subsystem (6a) from x̄10 = 0 to x̄1, f since

x̄1,l = Rlul = RlQ̃−1
1 RT

l W−1
l x̄1, f =WlW−1

l x̄1, f = x̄1, f . (16)

Now let us consider the subsystem (6b). To solve the problem we define the matrix
99

Wµ = RµQ̃−1
2 RT

µ ∈ℜn2×n2 , (17)
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where Rµ is the reachability matrix defined by

Rµ = [ B2 NB2 · · · Nµ−1B2 ] (18)

and
Q̃2 = blockdiag[ Q̃−1

2 · · · Q̃−1
2 ] ∈ℜµm×µm. (19)

If the system (1) is reachable in q steps then the input sequence

uµ =


uµ−1

uµ−2
...

u0

= Q̃−1
2 RT

µ W−1
µ x̄2, f ∈ℜµm (20)

steers the subsystem (6b) from x̄20 = 0 to x̄2, f since

x̄2,µ = Rµûµ = RµQ̃−1
2 RT

µ W−1
µ x̄2, f =WµW−1

µ x̄2, f = x̄2, f , (21)

Finally, we define the matrices

Q̃ =

[
Q̃1 0
0 Q̃2

]
, Rq =

[
Rl 0
0 Rµ

]
, Wq =

[
Wl 0
0 Wµ

]
(22)

and the input sequence can be computed from

ûq =

[
ul

uµ

]
= Q̃−1RT

q W−1
q x̄ f ∈ℜqm. (23)

The vector

x̄ f =

[
x̄1, f

x̄2, f

]
, x̄1, f ∈ℜn1 , x̄2, f ∈ℜn2 (24)

is related with x f ∈ℜn by (4).

Theorem 4 Let the system (1) be reachable in q steps and ūi ∈ ℜqm, i = 0,1, . . . ,q− 1
be an input sequence that steers the state of the system (1) from x0 = 0 to x f = ℜn.
Then the input sequence (23) also steers the state of the system from x0 = 0 to x f = ℜn

and minimizes the performance index (11), i.e. I(û) ¬ I(ū). The minimal value of the
performance index (11) is given by

I(û) = xT
f W−1

q x f . (25)

Proof The proof is similar to the proof in [13, 17].
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4. Procedure and example

The optimal input sequence (23) and the minimal value of the performance index
(25) can be computed by the use of the following procedure.

Procedure 1

Step 1. Knowing E,A ∈ℜn×n, B ∈ℜn×n find matrices P,Q ∈ℜn×n and using (3), (6c)
compute A1 ∈ℜn1×n1 , B1 ∈ℜn1×n, B2 ∈ℜn2×n, N ∈ℜn2×n2 .

Step 2. Knowing the matrix Q̃1 and using (12)-(13) compute the matrices Rl and Wl .
Step 3. Knowing the matrix Q̃2 and using (17)-(18) compute the matrices Rµ and Wµ.
Step 4. Using (4) find the vector x̄ f for given x f .
Step 5. Using (22) and (23) find the desired input sequence ui ∈ℜqm,

i = 0,1, . . . ,q−1.
Step 6. Using (25) compute the minimal value of the performance index.

Example 1

Consider the descriptor discrete-time linear system (1) with matrices

E =

 1 0 0
0 1 0
0 0 0

 , A =

 0 1 0
1 0 −1
0 0 1

 , B =

 0
1
1

 . (26)

The pencil is regular since

det[Ez−A] =−z2 +1 ̸= 0. (27)

In this case

P =

 1 0 0
0 1 1
0 0 1

 , Q =

 1 0 0
0 1 0
0 0 1

 (28)
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and [
In1 0
0 N

]
= PEQ =

 1 0 0
0 1 0
0 0 0

 ,
[

A1 0
0 In2

]
= PAQ =

 0 1 0
1 0 0
0 0 1

 ,
[

B1

B2

]
= PB =

 0
2
1

 .

(29)

Therefore, n1 = 2 and n2 = 1. The system (26) is reachable since condition (10) is met.
Find the input sequence ui ∈ ℜm, i = 0,1, . . . ,q− 1 that steers the state of the system
from zero state to final state x f = [ 1 1 1 ]T (T denotes the transpose) and minimizes
the performance index (11) with

Q̃ =

 2 0 0
0 2 0
0 0 2

 . (30)

From (30) it follows that

Q̃1 =

[
2 0
0 2

]
, Q̃2 = [2] . (31)

Using the Procedure 1 we obtain the following:

Step 1. Matrices A1 ∈ℜn1×n1 , B1 ∈ℜn1×n, B2 ∈ℜn2×n, N ∈ℜn2×n2 are given by (29).
Step 2. Using (12)-(13), (29), (31) we obtain

Rl =
[

B1 A1B1

]
=

[
0 2
2 0

]
, (32)

and

Wl = RlQ̃−1
1 RT

l =

[
0 2
2 0

][
0.5 0
0 0.5

][
0 2
2 0

]
=

[
2 0
0 2

]
. (33)

Step 3. Using (17)-(18), (29), (31) we obtain

Rµ = [B2] = [1] , (34)
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and
Wµ = RµQ̃−1

2 RT
µ = 1 ·0.5 ·1 = 0.5. (35)

Step 4. The matrix Q = I3 then x̄ f x f .
Step 5. Using (22) we get

Rq =

[
Rl 0
0 Rµ

]
=

 0 2 0
2 0 0
0 0 1

 , Wq =

[
Wl 0
0 Wµ

]
=

 2 0 0
0 2 0
0 0 0.5

 . (36)

From (23) we find the desired input sequence

ûq = Q̃−1RT
q W−1

q x̄ f =
(37) 0.5 0 0

0 0.5 0
0 0 0.5


 0 2 0

2 0 0
0 0 1


 0.5 0 0

0 0.5 0
0 0 2


 1

1
1

=

 0.5
0.5
1

 .

Step 6. Using (25) we compute the minimal value of the performance index

I(ûq) = xT
f W−1

q x f =
[

1 1 1
] 0.5 0 0

0 0.5 0
0 0 2


 1

1
1

= 3. (38)

5. Concluding remarks

Necessary and sufficient conditions for the reachability of the descriptor discrete-
time linear systems have been given (Theorem 3). The minimum energy control prob-
lem for the descriptor discrete-time linear systems by the use of Weierstrass-Kronecker
decomposition has been formulated and solved. A procedure for computation of the opti-
mal input and the minimal value of the performance index has been proposed. The effec-
tiveness of the procedure has been demonstrated on the example of descriptor discrete-
time linear system.

The presented method can be extended to fractional and positive descriptor discrete-
time linear systems with unbounded and bounded inputs.
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