Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we study the Borel summability of formal solutions with a parameter of first order semilinear system of partial differential equations with n independent variables. In [Singular perturbation of linear systems with a regular singularity, J. Dynam. Control. Syst. 8 (2002), 313-322], Balser and Kostov proved the Borel summability of formal solutions with respect to a singular perturbation parameter for a linear equation with one independent variable. We shall extend their results to a semilinear system of equations with general independent variables.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
825--845
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Shibaura Institute of Technology College of Engineer and Design Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
autor
- Department of Mathematics Graduate School of Science Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
Bibliografia
- [1] W. Balser, Formal power series and linear systems of meromorphic ordinary differential equations, Universitext, Springer-Verlag, New York (2000).
- [2] W. Balser, V. Kostov, Singular perturbation of linear systems with a regular singularity, J. Dynam. Control. Syst. 8 (2002) 3, 313-322.
- [3] W. Balser, M. Loday-Richaud, Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables, Adv. Dynam. Syst. Appl. 4 (2009), 159-177.
- [4] W. Balser, J. Mozo-Fernandez, Multisummability of formal solutions of singular perturbation problems, J. Differential Equations 183 (2002), 526-545.
- [5] K. Ichinobe, Integral representation for Borel sum of divergent solution to a certain non-Kowalevski type equation, Publ. Res. Inst. Math. Sci. 39 (2003), 657-693.
- [6] Z. Luo, H. Chen, C. Zhang, Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations, Ann. Inst. Fourier 62 (2012) 2, 571-618.
- [7] A. Lastra, S. Malek, J. Sanz, On Gevrey solutions of threefold singular nonlinear partial differential equations, J. Differential Equations 255 (2013) 10, to appear.
- [8] D.A. Lutz, M. Miyake, R. Schafke, On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J. 154 (1999), 1-29.
- [9] S. Malek, On the summability of formal solutions for doubly singular nonlinear partial differential equations, J. Dynam. Control. Syst. 18 (2012), 45-82.
- [10] S. Michalik, Summability of formal solutions to the n-dimensional inhomogeneous heat equation, J. Math. Anal. Appl. 347 (2008), 323-332.
- [11] S. Ouchi, Multisummability of formal power series solutions of nonlinear partial differential equations in complex domains, Asympt. Anal. 47 (2006) 3-4, 187-225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a5d0823-2141-4c04-a09d-eb326f1a712d