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PARAMETRIC BOREL SUMMABILITY
FOR SOME SEMILINEAR SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS
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Abstract. In this paper we study the Borel summability of formal solutions with a parameter
of first order semilinear system of partial differential equations with n independent variables.
In [Singular perturbation of linear systems with a regular singularity, J. Dynam. Control.
Syst. 8 (2002), 313-322], Balser and Kostov proved the Borel summability of formal solutions
with respect to a singular perturbation parameter for a linear equation with one independent
variable. We shall extend their results to a semilinear system of equations with general
independent variables.
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1. INTRODUCTION

Since the pioneering works by Lutz-Miyake-Schifke, Balser et al. the Borel summabil-
ity of formal solutions of partial differential equations with respect to the independent
variables has been studied extensively (cf. [3,5,8,10,11]). On the other hand, con-
cerning the summability of formal solutions of a partial differential equation with a
singular perturbation parameter we cite [2] and [4]. (See also [6,7] and [9].)

In this paper we shall study the Borel summability of formal solutions of partial
differential equations with a parameter. More precisely, we shall extend the results in
[2] to a semilinear system of partial differential equations with general independent
variables. We note that our system is not contained in the class of equations studied
in the above, nor can be decomposed into first order single equations. We use the
method of characteristics in order to prove our theorem which is different from that
of [2]. We observe that our method also yields the summability when the independent
variable moves in a given bounded open set.
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This paper is organized as follows. In Section 2, we state the main theorem, The-
orem 2.1 and give remarks to Theorem 2.1. In Section 3, we study formal solutions
and the Gevrey estimate. In Section 4, we prove elementary properties of the con-
volution needed for the proof of Theorem 2.1. In Section 5, we reduce the proof of
Theorem 2.1 to that of Theorem 5.1. After having prepared six lemmas we give the
proofs of Theorems 2.1 and 5.1. In Section 6, we give an extension of Theorem 2.1
when the independent variable lies in some open set not containing the origin.

2. STATEMENT OF RESULTS

Let z = (x1,...,25), n > 1, be the variable in C*. For \; e C, X\; #0 (j = 1,2,...,n),
define

n 8
L:= ;)\jxja—% (2.1)

Let N > 1 be an integer and let f(z,u) = (fi(z,u),..., fnv(z,u), u = (ug,...,un) €
C" be a holomorphic vector function in the neighborhood of the origin of € C" and
u € CN. We consider Borel summability of formal solutions of the semilinear system
of equations

where 7 € C is a complex parameter. We assume
£(0,0) =0, det(V, f(0,0)) # 0, (2.3)

where V,, f(0,0) denotes the Jacobi matrix of f(z,u) with respect to u at the point
z=0,u=0.
We shall construct the formal power series solution v(z,n) of (2.2) in the form

U(T/,TI) - Znuvu(x) = UO(x) + 77’01(96) te (24)
v=0

where the series is a formal power series in 7 with the coefficient v,(x) being
a holomorphic vector function of x in some open set independent of rv. We set
v (z) = v, = (U,(jl), e ,v,(,N)). We denote by € the neighborhood of the origin on
which every coefficient v, (x) is defined.

In order to state our results we recall some definitions (cf. [1] and [2]). The formal

Borel transform of v(xz,n) is defined by

B)(z,y) =Y vy(:v)r‘(yyi:_ly (2.5)
v=0

where I'(z) is the Gamma function. For an opening 6 > 0 and the bisecting direction &,
define the sector Sp ¢ by

6
Sg’gz{ze(c; argz—§|<2}. (2.6)



Parametric Borel summability for some semilinear system. . . 827

(So,¢ is illustrated in Figure 1.) We say that v(z,n) is 1-summable in the direction &
with respect to n if B(v)(z,y) converges in the neighborhood of the origin of (z,y),
and there exists the neighborhood U of the origin z = 0 and a 6 > 0 such that
B(v)(z,y) can be analytically continued to (z,y) € U x Sp¢ and of exponential
growth of order 1 with respect to y in Sp ¢. For the sake of simplicity, we denote the
analytic continuation with the same notation B(v)(z,y). The Borel sum V(z,7n) of
v(x,n) is then given by the Laplace transform

()OeiE
V)= [ ve ™ By (27)
0
We assume
V.f(z,0) is a diagonal matrix. (2.8)
We set
V.f(0,0) = diag (g1, ..., 14N)- (2.9)
Moreover, we assume
A >0, Repp >0 (j=1,...,n, k=1,...,N). (2.10)

\GJIS-Y

Iy

N

Fig. 1. Sp ¢ Fig. 2.

Let Cy be the convex closed positive cone with vertex at the origin containing \;
(j=1,2,...,n)and (ux) L (j=1,2,...,n;k=1,...,N). Write

Co={2€C;—0; <arg z < 6:} (2.11)

for some 0 < ¢; < 7/2 and 0 < 05 < 7/2 (Figure 2). Define ¢ = —7 + 25% and
0 = m— 61 — 6. We observe that Sryg ¢ is equal to C\ Cy. Then we have the following
theorem.

Theorem 2.1. Suppose (2.3), (2.8) and (2.10). Then there exists the neighborhood
U of x = 0 such that v(z,n) is 1-summable in the direction argn with n € Sy ¢ when
x € U. Moreover, V(z,n) is holomorphic and satisfies (2.2) when (z,n) € U X Srtg.e.
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Remark 2.2.

(a) In [2] the summability of formal solutions (2.4) was shown for (2.2) with N =1
and n = 1 assuming that f is the polynomial of degree 1 with respect to u. In fact,
in Theorem 5.1 of [2] the summability was proved under the condition equivalent
to (2.10). It was also shown that (2.10) is necessary in general.

(b) An interesting phenomenon shown in [2] is that a certain Diophantine phe-
nomenon appears in the summability, while it does not appear for an irregular
singular equation (cf. [4]). In the case of general independent variables one can
easily see that a similar multi-dimensional Diophantine condition enters in the
analysis. Because we do not know how to generalize the proof in [2] to a semilin-
ear multi-dimensional case, we use the method of characteristics in order to prove
the summability. More precisely, the stable behavior of the characteristics in our
proof corresponds to the Diophantine type condition in [2]. We note that our
method also shows the summability in the case when the independent variable is
outside the origin without assuming (2.10). We briefly mention the extension in
the last section.

3. FORMAL POWER SERIES IN THE PERTURBATION PARAMETER

In this section we construct a formal solution of (2.2) and obtain some estimates of
formal series.

Construction of a formal solution. We substitute the expansion (2.4) into (2.2) with
u = v. The left-hand side is given by

nLv =" Lv,(x)n" . (3.1)
v=0

By the partial Taylor expansion of f with respect to v the right-hand side of (2.2) is
written as

f(z,v) = f(z,v0 +vin +v2n® +...)

) (3.2)
= f(xa UO) + n(vuf)(xav(J)vl + 0(77 )
By comparing the coefficients of 77, we obtain for n° =1
f(zyvo(x)) =0 (3.3)
and for n
Lvg = (Vo f)(x,v0)v1. (3.4)

We solve (3.3) with the condition vo(0) = 0 by means of an implicit function theorem
on some )y in view of the assumption f(0,0) = 0 in (2.3). Next, we solve v; from (3.4)
on €, where we may assume det(V,, f(z,vo(x))) # 0 on Q, since det(V, f(0,0)) # 0.
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In order to determine v,(z) (v > 2) we compare the coefficients of n of (2.2).
Indeed, we differentiate (3.2) (v — 1)-times with respect to n and put n = 0. Then we
obtain

Lu,—1 = (Vuf)(z,v9)v, + (terms consisting of v, k < v). (3.5)

We observe that the second term in the right-hand side appears from products of
terms in (3.2) of the form v;; 7% such that

i is .. ig=v, i1 >0,...0>0i; #0

for some ¢ > 2 and j < {. It follows that all terms in the second term satisfy vy,
k < v. Therefore, one can write (3.5) in the following way

Vuf(z,v0)v, = Hy(z,v0,01,...,0,—1) forall v >2.

Since det(V, f(z,vo(z))) # 0 on Qg, one can inductively determine v,.
The next theorem gives the existence of a formal solution.

Proposition 3.1. Assume (2.3). Then every coefficient of (2.4) is uniquely deter-
mined as a holomorphic function on .

Proof. By (2.3) and an implicit function theorem, vg(z) is uniquely determined as the
holomorphic function at the origin such that vo(z) = O(|z|). Suppose that vg(z) is
determined up to some ¢ — 1 in the neighborhood of the origin. Then, by an implicit
function theorem one can determine vy(x) uniquely in the neighborhood of the origin
depending on ¢. Because vy (x) are determined recursively by differentiations and alge-
braic calculations, the recurrence formula for vy(x) implies that ve(x) is holomorphic
on . O

Gevrey estimate of order 1. We shall show the following proposition.

Proposition 3.2. Assume that f(x,u) be analytic with respect to x in the neighbor-
hood of the origin 0 € C™ and an entire function of u € CN. Let v in (2.4) be the
formal series solution given by Proposition 3.1. Then there exist a neighborhood U of
the origin, x = 0 and a neighborhood W of the origin y = 0 in C such that B(v)(z,y)
converges in U x W.

Proof. We use the majorant relation v < v. Namely, for v = > 2%u, and v =
Y %4 the relation u < v holds if |us| < vo for every a. If w and v are vector
functions, then u < v means that for every j, the j-th component u; of v and v; of v
satisfy u; < v;. If v is a scalar function, then v < v means that u; < v for every j.

For p > 0, define
-1
r1+...+ Ty
Op(z) = <1 — 1p> . (3.6)

The set of holomorphic functions at the origin such that v < ¢,C for some C' > 0
forms a Banach space with the norm ||ul| given by the infimum of C satisfying
u<¢,C.
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First we estimate the differentiation. For any integers 1 < j < n and k > 1, we
have

0 k
aij%(w)k = ;¢p($)’“+1~ (3.7)

On the other hand, because z;(V,, f)(z,v9) ! is analytic at the origin for 1 < j <n
we have, for sufficiently small p > 0

5 (Vuf)(@,00) ! < K6, (3.8)

for some K > 0. Similarly, we have vy < ||vg||¢,.

We next estimate vi. By virtue of (3.4) we have vy = (V,, f)(x,v9) 1 Lvg. Hence,
by (3.7) and (3.8), we have v1 < [[vg[|Co¢3 for some Cy > 0. We shall show that there
exists C' > 1 independent of v > 1 such that

U K C’Qm_lm!¢§m_l, m=1,2,... (3.9)
Suppose that (3.9) holds up to m < v — 1 and consider v,. In view of (3.5) we first
consider (V. f)(z,v0) *Lv,_1.
(Vuf)(@,00) " Lo,y < C* 73 (v — 1)l(dv — 5)¢5" ~°Cy < 4C1C* " Pulgs’ ™% (3.10)
for some C7 > 0 depending only on K and L. Hence, if 4C; < C and C > 1, then we
have an estimate like (3.9) since 1 < ¢,.

Next, we estimate the nonlinear term. Set v = vg + u, u = nv; + n?vs + ... and
expand

flx,v) = f(x,v0) + Vo f(x,v9) - u+ Z rg(x,vo)uﬁ. (3.11)
[8]1>2

By inserting the expansion of u and by comparing the coefficients of n” of the
right-hand side of (3.11) we see that the nonlinear term in (3.5) is given by

181

> > 73(2,00)Vy - - - V.- (3.12)

|18|>2 =2 v1+...4+ve=r,v;>1
By inductive assumptions on v,, we have

18l 18l

> > Vpy oo Uy <33 O GRE (3.13)
=2

£=2 v1+...4vp=v,v; >1,0>2
We recall the inequality
! !
Z 1/1...'. Vy: § 1. (314)
vit...Fre=v,v; >1,0>2 v
Then the right-hand side of (3.13) is bounded by

18]
< CQV72V! Z 0275(25;1)1172 < C2V7202V!¢4;u72
=2
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for some Cy > 0 independent of v because Y=, C*>* <ooby C>1.
In order to estimate (V, f)(z,vo) "' times (3.12) we consider

(Vuf)(z,v0) " Z rg(x,vo). (3.15)

[B81=2
By virtue of (3.11) we have
3" rale,v0) = fzvo +€) — fl@,v0) — Vu(@,00) - e, (3.16)
|B]>2
where e = (1,...,1). By using the scale change of variables u — eu, ¢ > 0, one may

assume that f(z,vo+e) is analytic at = 0, if necessary. Therefore, one can estimate
(3.15) like <« K¢, for some K > 0.

Therefore, (V.. f)(z,v9)~" times (3.12) can be estimated by C*~?CoKw!¢y 1.
By inserting this estimate and (3.10) into (3.5) we obtain (3.9) for m = v. By (3.9)
and the definition of majorant relations, we obtain the convergence of the formal Borel
transform in U x W. This ends the proof. O

4. CONVOLUTION ESTIMATE

Let € be the smallest open set containing the sector Sy » in (2.6) with 0 < 8 < 7 and
the disk {|z] < ro} for small rog > 0 such that z € Q implies z + ¢t € Q for every real
number ¢ < 0. For ¢ > 0, we define the space H.(2) as the set of those h € H(2)
such that there exists K > 0 for which

|h(2)| < Ke ™ *(1+|2])"2 forall z € Q, (4.1)

where H () is the set of holomorphic functions in Q. Obviously, H.(€2) is the Banach
space with the norm
IAllo,c := sup [A(2)I(1 + |2])2ece . (4.2)
ze

The convolution f x g (f,g € H.(R2)) is defined by
(P29 =1 [ £ -9t = [ f0g-na. @)
0 0

Remark 4.1. The above definition (4.3) seems different from the usual one of the
convolution. In the summability theory developed in [1] or [2], the operation * in (4.3)
plays the role of the usual convolution. Indeed, for nonnegative integers 7 and j the
formal Borel transform B(n*7) of nitJ = nin is given by ¢*7/(i + j)! with ¢ being
the dual variable of 7, which might be equal to B(n*) * B(n?) = ¢* x ¢7/(i!j!), where
* denotes a “convolution”. If we use the definition of the operator x as in the above,
then one can verify that ¢** ¢7/(i!j!) coincides with (**7/(i + j)!. For more details
we refer to [1].
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Write f'(z) = (df /dz)(z). Then we have the following proposition.

Proposition 4.2. For every f,g € H.(Q) such that f(0) = g(0) = 0 and f',¢’ €
He(Q) we have f* g € H () with the estimates

1f* glla.e < 8f] 9'llee (4.4)

Proof. Because f % g = g+ f we shall prove the first inequality of (4.4). We have

acllgllae I *gllae <8l fllac

By (4.2) and by taking the path of integration from 0 to z, we have

9llo,ce™ 7 /(1 + 1z = t) A [t]) 7t

0

|z
glla,ce™ " /(1 + 2| — 5)72(1 + s)*2ds.
0

/ £z = Dg)dt| < | llae
0 (4.5)

< £ llee

We divide the integral in the right-hand side into two parts, s < % and s > ‘;—‘ If

s < ‘;—l, then we have (1 + |z| — s)72 < 4(1 + |2]) 72, while in case s > L;‘ we have

(14 5)72 < 4(1 + |z|)~2. Hence we have

|z]/2 |z|/2
. 4 gee A
0/<1+|z|—s>2<1+s>2d8§<1+|z>2 0/(“5) b e 49

One can similarly estimate the other part like
||
/ (14 |2] —8)72(1 4+ 5)"2ds < 4(1 + |2|) 2
1z1/2
Therefore, we see that the left-hand side term of (4.5) can be estimated by

81| la.cllglla.ce =€ #(1 + |z|)~2. This ends the proof. O

5. PROOF OF THEOREM 2.1

First we define a function space. Let D and €2 be the open connected set in the
neighborhood of the origin of C™ and the set given in (4.1), respectively. Let H(D, )
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be the set of holomorphic functions in (z,y) € D x . Then we define H.(D,2) as
the set of those h = h(x,y) € H(D, Q) such that there exists Ky > 0 for which

sup |h(z,y)| < Koe ¥(1 +|y|)~2 for all y € Q. (5.1)
xz€D

The space H.(D,) is a Banach space with the norm | k||, = inf Ky, where K is
given in (5.1).

Proof of Theorem 2.1. We first show the summability of v(z,n) in the direction
arg n = m when x € U, where U is given in Proposition 2. One may assume \, = 1
without loss of generality by dividing the equation with A, # 0. In terms of (2.2)
with u replaced by vo + u, (3.11) and f(x,v9) = 0 we obtain

Lu=—Lvg+n" ' Vof(z,vo)u+n! Z rg(x,v0)u”. (5.2)
|B1=2

Let 4(y) := B(u) be the formal Borel transform of u with respect to 7, where y is the
dual variable of 7. By the formal Borel transform of (5.2) and by recalling that n—!
corresponds to 9/0y, we obtain
ou 0
Liv = —Lvy + Vuf(x,vo)a—;‘ 5 I%Q ra(z, v0) (@), (5.3)

where (@)*# = (41)*" ... (an)*™PY, 8= (B, .., Bn), and (i;)*P is the B;-convolution
product, (@)% = a; * ... *d;.

Let v be the formal solution given by Proposition 3.1 and consider the formal
Borel transform B(v). Define (z,y) := B(v) — vg. Then @(x,y) is analytic when
(z,y) € U x W, and 4 is the solution of (5.3) in the neighborhood of y = 0 such that
4(z,0) = 0 in . We show that every solution of (5.3) analytic at y = 0 and satisfying
4(x,0) = 0 is uniquely determined. Indeed, by definition the convolution product of
y'/i! and y7/;! is equal to y*7 /(i + 5)!. Hence, if we expand 4 in the power series of
y and insert (5.3), then every coefficient of the expansion can be uniquely determined
from the recurrence relation because V, f(x,vg) is invertible. Therefore, if we can
show the existence of the solution of (5.3) being analytic in (x,y) € U x W which is
of exponential growth with respect to y in €2, then we have the analytic continuation
of the formal Borel transform of v with exponential growth in y € Q. Hence we have
the summability of v. O

Therefore, it is sufficient to prove the following theorem.

Theorem 5.1. There exist ¢ > 0, a neighborhood of the origin x = 0, D and Q as in
(4.2) such that (5.3) has a solution @ in H.(D,).

The proof of Theorem 5.1 is given after having prepared six lemmas.

Let ¢ > 0, D and Q be given. We may assume that D is contained in an open
ball centered at the origin. In order to prove the solvability of (5.3) when z is in the
neighborhood of the origin and y € €2 we shall study

ow

Lo = (Vu)) .05

= g(fv,y), (54)
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where w = (wy,...,wn) and g = g(z,y) = (91,..-,9n), g5 € He(D, ) is a given
function.

By the assumption (2.8), for a given 5,1 < j < N we denote the j-th diagonal
component of (V, f)(z,0) by (V,f);(z,0). We use the method of characteristics in
order to solve (5.4). Namely, we consider

¢ duy, dy

B = — 5 /4}:1727...,71—1. 5.5
Let b € C, b # 0 be sufficiently small and yy € Q be given. By integrating (5.5) we
have

Ty, = cpCF (k=1,2,....,n—1), y=yo — ®,(¢,b), (5.6)

where

¢
(¢, b) :/ (sMer, ..., 8™ ey 1,5;0)s Lds, (5.7)
b

and the integral is taken along the non self-intersecting curve which does not encircle
the origin. Then we make analytic continuation around the origin. Here yq := y(b) € 2
is the initial value of y = y(¢) at ¢ = b and ¢’s are chosen so that the initial point
2@ = (z1(b),...,2n_1(b),b) lies in D. Define ®((,b) := (21(¢,b),...,Pn((,D)).
Then we have the following lemma.

Lemma 5.2. Let (; € D\ {0}. Then, for every j, 1 < j < N there exists a curve
Veo.i Which passes (o and tends to the origin such that Im®;((,b) = Im®;(p,b) for
every ¢ € Yeo,5-

Proof. The condition Im ®,;(¢,b) = Im ®;(¢p, b) is equivalent to Im ®,;(¢, {p) = 0. We

shall look for the curve ¢, ; satisfying the latter condition. We first observe that there
exist R(¢) and p > 0 such that

®,(¢,Go) = 1y log (g) L R(Q), (5.8)

where R(¢) = O(¢”) when ¢ — 0. Indeed, by assumption (2.9) we have that
(Vuf)j(z,0) = p; + O(|z|) (Rep; > 0) when x € €. Because A\, > 0, the integral

(¢, o) = fC t=1(Vyf)j(x,0)dt with x), = c,t** has the expression (5.8).
Set p; = a5 + ZBJ with a; > 0. Then we have

(a; +1B;)10g(¢/Co) = (a; +iB;)(log(I¢]/[So]) + i arg(C/Co))
= (aj log([¢]/I¢0]) = B; arg(¢/ o)) (5.9)
+ i (o arg(C/Co) + B log([¢]/1Col)) -

Hence the relation Im ®;(¢, (o) = 0 is written as

a; arg(¢/Co) + B log(I¢]/[¢o]) + ImR(¢) = 0. (5.10)
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We define 0 := arg((/¢o), 7 :=|¢]/|¢o| and m(r,0) := Im R(¢). Then (5.10) can be
written in
a;0 + B;logr +m(r,0) = 0. (5.11)

By (5.8), we have m(r,0) = O(r?) as r — 0. Let £ > 1 be an integer such that pf > 1.
Set 7 = #. Then (5.11) can be written as «;0 + 3;¢log 7+ m(7,0) = 0. Assume that
Bj # 0. Then it follows that

log7 = —(B;£) " (a0 + m(7, 0)). (5.12)

Hence we have

a;0 m(fe,9)> . (5.13)

r=exp|——— —

< pit pit
Clearly, m(7*,6) is continuously differentiable with respect to # and the derivative
is small if 7 is sufficiently small. By an implicit function theorem we see that (5.13)
can be solved as 7 = 7(6). Clearly, 7(0) asymptotically equals exp (—(c;8)/(8;£)). We
define the curve ~¢, ; = 7¢,.,; (¢) by the relation

r=70)", 0 :=arg(¢/¢o), = [C|/|Col, (5.14)

which passes (y and tends to zero. In order that they tend to the origin we require
the following conditions.

(i) If B > 0, then we have a;/B; > 0. We define ~¢, ; by (5.14) with 6 > 0. Hence
the curve encircles around the origin counterclockwise and tends to the origin.
(See Figure 3.)

(ii) If B; < 0, then we have «;/5; < 0. We define 7y, ; by (5.14) with § < 0. Then
the curve encircles around the origin clockwise and tends to the origin. (See
Figure 4.)

(iii) If B; = 0, then by (5.11) we have a;;0 +m(r,6) = 0. In order to solve the relation
with respect to 6 we study the derivative of R(¢) with respect to #. By definition

we have
Corei®
R(¢) = / (Vuf)i(sMer, ... 8™ e, 8;0) — pj) s~ ds. (5.15)
o

Differentiating the right-hand side of (5.15) with respect to 6 we see that it is con-
tinuous with respect to 6. Therefore, by an implicit function theorem, (5.11) can be
solved as @ = 60(r). We define v, ; by (5.14) with » = 7(6)* replaced by 0 = 0(r),
0<r<1,60(1) =0. (See Figure 5.) Moreover, we have

0(r)| < a5t |m(r,0)] < Cr* /o

for some C' > 0 independent of r. This proves that the curve 7¢, ; tends to the origin.
This ends the proof.
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Y<o,5 Y<o,4

Co

Flg. 3. Bj >0 Fig. 4. ﬁj <0

V0.5 G

Fig. 5. Bj =0
O

Lemma 5.3. Let ¢ # 0 and {y # 0 be given complex constants. Then, for every j,
1 <j < N, Re®;((,c) is monotone decreasing when ( approaches the origin along
the curve ¢, ;-

Proof. By (5.9), we have
Re ®;(¢, (o) = ajlogr — B0 + m(r,0), (5.16)

where m(r,0) := Re R((), (/o = re®. First we consider the case 3; > 0. In view of
the definition of ¢, ; the parameter of the curve is # > 0. It is sufficient to show that
the right-hand side of (5.16) is a monotone decreasing function of 6 in § > 0. Because
—f;0 trivially has the property, we consider a; logr + m(r,6). Let p > 0 the number
given in (5.8). Let ¢ satisfy £p > 1. We set » = 7*. Then, in view of (5.12) we shall
show that

ajllog + m(i,0) = —a20/8; — aym(F,0)/8; + m(,0) (5.17)

is a decreasing function of #. We shall show that the derivatives of m(#,6) and
m (7, 0) with respect to 6 are small if  is small. We consider m(7,6) = Im R(().
Since ¢ = (ore’?, we will estimate (9/00)R(¢). In view of (5.15) we have

0

%R(g) =i(Vuf);(Mer, .o, e, G 0) —ipy. (5.18)
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By the assumption A; > 0 this quantity is bounded when |(]| is sufficiently small uni-
formly in 6. This proves the assertion. The smallness of the derivative of 7 (7, §) with
respect to 6 is proved similarly. Hence, by (5.16) and (5.17) we see that Re ®;(¢, (o)
is a decreasing function when ¢ tends to the origin. Next we consider the case §; < 0.
We take § < 0 and we make the same argument as in the case 8; > 0 by using (5.16).
Hence we have the same assertion.

We study the case 8; = 0. By a similar argument as in (5.16), we have

Re ®;(¢, o) = ol log 7 + m (i, 0). (5.19)

By Lemma 5.2, the parameter of v, ; is . The point ¢ on the curve tends to the origin
as 7 — 0. We calculate (9/97)m(7,0). By the same calculation as in (5.18) we may
consider the following quantity

G (V)i ens o O enn, G0) = i) ¢ (5-20)

Since (Vuf); — p; = O(|¢]P) and |¢| = 7, the quantity in (5.20) is bounded by
FL|¢|P = 7771, Because pf > 1, the quantity is arbitrarily small if 7 is sufficiently
small. In terms of (5.19) this implies that Re ®;((,{p) is monotone decreasing as
7 — 0. This completes the proof. O

Lemma 5.4. Let g = g(x,y) = (91,.--,9~), g5 € He(D, Q) be such that g(0,y) = 0
for every y € Q. Then the solution of (5.4) is given by

w = P()g = (P0,1917~-~aP0,NgN)~ (521)

Here, for every j, 1 < j < N and ( # 0 in a neighbourhood of the origin we take gy
such that ¢ € ~y¢,,; and Py ; is given by

¢
Pojg; = /gj(s/\lcl, Sy sy — (s, b))s_lals7 (5.22)
Co

where the integral is taken along the curve ¢, ; from (o to ¢ € v¢,.5- The independent
variables in (5.22) satisfy the relation (5.6).

Proof. We show that the integrand in (5.22) is well defined. By (5.6) and (5.7), we
have
Yo — ®j(s,0) =y — @;(s5,0) + ©;((,0) = y + P4(C, 5). (5.23)

By Lemma 5.2, we have that Im®,({,s) = 0 if s € 7, ; because { € v, ;. On the
other hand, by Lemma 5.3, we have that Re ®;((, s) is a monotone decreasing function
of { € v¢,,; when ¢ approaches the origin. Hence we have Re ®;({,s) <0 on v¢,,;. In
view of the assumption on 2 we have y + Re ®;((, s) € Q for every y € Q.

Next, we take the neighborhood Uy of the origin such that the formal solution is
holomorphic in Uy. We want to show that substitution z;, = s**¢;, into the integrand
of (5.22) is possible for s which is on the segment of 7, ; between (y and (. For the
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purpose of this we shall show that s ¢y, is sufficiently small by taking ¢;, sufficiently
small. We observe that

5™ = exp (\j(log |s| +iarg s)). (5.24)

Because A; > 0, the absolute value of the right-hand side of (5.24) is monotone
decreasing when r = |s| tends to zero, namely s tends to the origin along -y, ;. This
proves the assertion. Hence the right-hand side of (5.22) is well defined. We note that
the integrand is integrable at the origin in view of the assumption g;(0,y) = 0 for
every y € .

Next, we shall show that w; := Py jg; (j = 1,2,..., N) satisfies the equation (5.4),
namely

ow;
Ljwj = (Vuf);(=, 0)7; = g(z,y). (5.25)
Indeed, by (5.5) and (5.6), we have

de Z Oy, Bw] dy dw;

9@ y)en aC x| 9C Oy

(5.26)

< kﬂﬁk%_( uf)j(,0) dw;
=2 ¢ dy

Multiplying both sides with ¢ and setting ¢ = x,, we have (5.25). This completes the
proof. O

Let ¢ satisfy |(p| = 79 > 0. In the following we assume that there exists an g9 > 0
such that |¢|/|Co| > o for ¢ corresponding to D, where we recall relation (5.6).

Lemma 5.5. There exists a constant ¢1 such that, for everyl < j < N, g; € H(D, ),
we have

< cillgslle (5.27)

0
1Posgyle < cillgslle Haywo,jgj)

c

The constant ¢y is independent of o, (o] =10 > 0.

Proof. We first show that the integral (5.22) converges when ¢ € ¢, ;. Noting that
yo — P;(s,b) = y+ ®;(¢, s) we make the change of variable o = y + ®;((, s) in (5.22)
from s to 0. We have do = —%ds. Observe that the right-hand side is independent
of y. We have o = y for s = ¢ and o = y+(, for s = (o, where {y = ®;(¢, o). Clearly,
5 € Y¢,,; is expressed as ¢ € y + ¢&,j, where 7 ; is the straight line connecting 0
and {y. Then (5.22) is written in

do
w=— / g(sMer, . 8N e, 1, 80) =) (5.28)
(vuf)]

Y¢o.d

where (V, f); is bounded from below by the assumption (2.3).
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We next estimate the growth of yo — ®;(s,b). In terms of (5.23) we have
exp (—cRe (yo — ®;(s,b))) = exp (—cRe (y + ®;((, 5))) - (5.29)

By Lemma 5.3, Re ®,(¢, s) is decreasing in ¢ as ¢ tends to the origin along ~¢, ;. It

follows that Re ®;({,s) < Re®,(s,s) = 0. Hence we need to estimate e—cRe®;(¢.s),
We have that ®;(¢, s) is asymptotically equal to p;log(¢/s). Set log(¢/s) = x+iy and
p; = a+1if with o > 0. Then we have Re (¢ log(¢/s)) = axz — By. On the other hand,
by definition we have Sz +ay = ¢ for some c. Hence ax — By = (a+B%a )z —cBa~ 1.
Noting that = = log(|¢|/|s]) > log(|¢|/|C0]) > logeg, we have

exp(—claz — By)) = exp(~(a + B0~ )ew + 2B~
< exp ((a + %o Hclog 551 + 025(1*1) =: Ky.

This proves
exp (—cRe (yo — ®;(s,0))) < Koexp (—cRey). (5.30)

We shall estimate |yo — ®;(s,0)| = |y + ®;((,s)| from the below. Because
Im®;(¢,s) = 0 and Re®;((,s) < 0 on ~¢,,;, there exists C; > 0 independent of
¢ and s such that

(L+|yo — @;(s,0)) 7> < C1(1+|y[)~2 for all y € Q. (5.31)
Therefore, we get from (5.30) and (5.31) that

exp (—cre (Yo — @5(s,b))) |da|>
(1+ |yo — ®5(s,0)[)? (5.32)

;e < sup ((1 e (eRe) [ ol

< Callg e / (do| < Csllg e

for some Cy > 0 and C3 > 0.
We shall show the latter inequality of (5.27). We have

L ~ 1
wy:_g(gé\lclv"'vcg\n7 CnflaCO;y—’_CO)(V f)
wJ)j

+9(¢Mey, .. ~,CA"’10n717§;y)ﬁ~
ul)j

Using (5.33) we have the latter inequality of (5.27) by the same argument as ||w||.
since (V, f); is bounded. O

We shall solve (5.3) in H.(D,2). First we note
i ol ou
== 2 - ey 34
Vol g = Vaf (e, 050 + (Vuf () - Vuf@O)GE (530)

We note ||V f(x,v0) — Vo f(x,0)]] = O(||vo]]) when ||vg|| — 0. Note that these terms
are also estimated by K4e||wy||c, where ¢ is small and K, is some constant.

(5.33)
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We define the approximate sequence 4y (k=0,1,2,...) by 4o =0 and

iy = —PyLug (5.35)
N 0, a .
Gy = Py Z rg(x, Uo)a—(ul)f — PyLvg + POR(:z:)a—ul (5.36)
|B1=2 Y Y
o1
+ Po(Vuf (@,v0) = Vuf(@,0) 5
. 9 . 5 0 .
Uk4+1 = Py Z ng(.’ﬂ, vo)—(uk)* — PyLvg + POR(x)—uk (537)
122 % %
o
+ Po(Vuf (@,v0) = Vuf (2,0) 5 =
where k = 1,2,... Then we have the following lemma.

Lemma 5.6. Let D be as in Lemma 5.5. Then there exists a constant Kz > 0
independent of k such that

||ak||c S C€K3, ||(ﬁk)y||c S C€K3a k = 07 17 27 e (538)

Proof. In order to show that the sequence is well defined we make an a priori estimate.
Given £ > 0. We take |(p| sufficiently small such that ||Lvgl|. < €. By (5.27), we have

la1le < [|[PoLvolle < C||Lvgle < Ce. (5.39)

Similarly, by using (5.27) we have [|(@1)y]lc < Ce.

Next, we estimate ||z, and ||(d2)y||.. Because the argument is similar, we con-
sider ||tz]|.. Because vo(z) = O(|x|), there exist K5 > 0 and K¢ > 0 such that for
every € > 0 we have

170 = sup |ra(x, vo(2))| < eKG K
xeD

for all |8| > 2 if D is sufficiently small. By (5.36), (5.39), (4.4) and the elementary
property of convolution, we have

sl < Cl[Lvolle +C >
EE
< Ce+CD  Irpleo(Ce)l + 20K,

B

0
Tﬁaf(’ftl)’ﬁ H + 202€2K4

(5.40)

<Ce |14 CeK;5 Z K}lfl(Cs)w_1 +2C%% K.
|B1=2



Parametric Borel summability for some semilinear system. . . 841

If we take CeKg < 1, then there exists K7 > 0 such that the right-hand side of (5.40)
can be estimated by Ce(1 + 2CeK, + C? K5 KZK7c?). Hence, if we take € so that
C?KsK2Kre < 1, then we have ||iz|. < CeKj3 for some K3 > 0 independent of .
Similarly, we have ||(42)y ]l < CeKs.

We continue to estimate ||ds]|. and [|(@3)y]|c. Clearly, we see that the same argu-
ment works if we replace Kg with some constant Kg. By induction we have an a priori
estimate. O

Lemma 5.7. Under the same assumptions as in Lemma 5.6 we have that ty
(k=1,2,...) converges in H.(D, ).

Proof. Let | > m and write @ — iy, = > " (@j4+1 — ;). By (5.37), we have

j=m
Uj+1 — Uy
9]
=P Y "5 5y (@) = (@5-1)"")
181=2
_ POR(:c)a%(aj — 1) + Po(Vuf(z,00) — Vuf(, 0))5%(%‘ ~h)
=P 7“/38% (Z(ﬁ]yu — i) * Ry (ay, ﬂj—ﬁ)
B v=1
- POR(x)a%(ﬁj —dij_1) + Po(Vuf(z,v0) — Vo f(z, 0))8%(%‘ —tj-1),

where R, (4, 0;_1) is the polynomial of @, and @;_, with degree greater than or equal
to |8] — 1 > 1 with respect to the convolution product.
We shall show that

i1 = Aglle < 27M1(05 — j-1)ylles  N(@jp1 —t5)ylle < 27 (a5 —tj-1)ylle, (5.42)

if € is sufficiently small. Because the proof is similar, we shall show the latter one. In
order to estimate |[(4;j11 — ;)yllc We apply 0/0y to both sides of (5.41). Then we
estimate the right-hand side. In view of Lemma 5.5 we may consider the following
terms

> Hm (Z(ﬁj,v —lj1u)y * Ry(ﬂj,ﬂj_l)) HC
+ |1 R(@) (05 — dj-1)yll, + | (Vuf (@, 00) = Vuf(2,0))(@5 — 45-1)y]l, -

The first term is estimated by using the estimate of the convolution in §4. Because
IR, (Gj,G-1)|lc = O(e) by virtue of (5.38), we can estimate the first term by a
constant times €| (% —t;—1)y||c. The second and the third terms can be estimated by a
constant times €||(4; —U;j_1)yl|c, because R(z) = O(|z|) and V, f(x,vo) — Vo f(z,0) =
O(Jz|). Hence, by taking e sufficiently small, we have the second inequality of (5.42).
Finally, the estimate (5.42) shows that 4y is a Cauchy sequence in H.(D, ) and it
converges to some 4 € H.(D,2). Hence, we obtain the solution . O
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We observe that Lemma 5.7 implies the solvability of (5.3) in H.(D, Q).

Proof of Theorem 5.1. First we show the solvability of (5.3) on D corresponding to
the annulus Ty = {egro < || < 7o} in terms of (5.6). Take an open set Ay in the annu-
lus and solve (5.3) for D corresponding to Ag. By Lemma 5.7, we have the solvability
of (5.3) on D as in the above, which is equivalent to the summability on D. Next, take
an open set A in the annulus such that Ag N A; # (). Then we have the summability
on some D; corresponding to A;. By virtue of the uniqueness of the Borel sum two
sums corresponding to Ag and A; coincide on the set Ay N A;. Hence, we have an
analytic continuation of the solution of (5.3) to the domain corresponding to Ay U A;.
By repeating the argument we have the solvability of (5.3) for D corresponding to ¢
such that eqrg < [¢] < ro.

Next, we take annulus T with rg replaced by 71 such that Ty N Ty # (. Then
we have the summability on the domain corresponding to 7. Moreover, in the proof
of Lemma 5.5 the constant in the estimate in (5.28) depends on an integral like

fab s~1ds = log(a/b). Hence we have the solvability of (5.3) in the same domain in
the sense that we have the summability in H.(D1,Q) for the same ¢ and Q. By
the uniqueness of the Borel sum we can make analytic continuation with respect (.
Therefore, we have the solution % in the small neighborhood of the origin such that
¢#0.

Let uw be the Laplace transform of 4. Then w is the Borel sum of the formal
solution with respect to n when x € D. Note that u and @ are analytic with respect
to z in D. We denote u and 1, respectively, by up and @p. Let D’ be any domain
such that DN D’ # () and let up and up, be the corresponding Borel sum in D and
D', respectively. Because the Borel sum with respect to 7 is unique for every x, we
have that up = up on DN D’, from which we have an analytic continuation of up to
DU D’. By choosing the sequence of open sets D we make an analytic continuation of
up to the set (C\ 0)™ N By, where By is a small open ball centered at the origin. By
the uniqueness of the Borel sum the analytic continuation of 4p(z,y) with respect to
z to the set (C\ 0)" N By, y € N is single-valued. We also note that in view of the
construction of 4p the growth estimate with respect to y of 4p(z,y) is uniform for
x € (C\ 0)" N By. Therefore, we can define 4(z,y) := 4p(z,y) on € (C\ 0)" N By
and y € Q) by taking x € D.

The function 4(z,y) may have singularity on z € (C™\ (C\ 0)") N By, y € .
We shall prove that the singularity is removable. First consider the singularity with
codimension 1. For simplicity, let us take yo € €, 2, = (29,...,22) with x? # 0 and
consider the expansion

i(,y) = Y (@)@ - 20)"(y — o)’ (5.43)
v>0,5>0

By what we have proved in the above, the right-hand side is convergent if o’ — x|,
and y — yo are sufficiently small and z1 # 0. Moreover, by the boundedness of 4(x,y)
when z; — 0 and Cauchy’s integral formula we have that 4, j(z1) is holomorphic
and single-valued and bounded in the neighborhood of the origin except for z; = 0.
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Hence, its singularity is removable. In the same way one can show that the singularity
of codimension 1 is removable.

Next, we consider the singularity of codimension 2. For the sake of simplicity,
consider the one 1 = x5 =0, x§ = (29,...,2%) with x? # 0. By arguing in the same
way as in the codimension-one case we have an expansion similar to (5.43) where
x' — x( and 4, j(z1) are replaced by 2" — z( and 4, j(x1,x2), respectively. Because
Uy, (21, 22) is holomorphic and single-valued except for 1 = x2 = 0, we see that
the singularity is removable by Hartogs’ theorem. As for the singularity of higher
codimension > 3 we can argue in the same way by using Hartogs’ theorem. We see
that @(z,y) is holomorphic and single-valued on 2z € C™ N By, y € .

The exponential growth of 4(x,y) when y — oo in y € Q for z € C* N By can be
proved by putting some ¢ to be equal to zero when constructing 4p(z,y). Indeed,
we have already proved the fact in the above argument. Hence, we have proved the
solvability of (5.3), and the summability of our solution as desired. If we choose the
neighborhood of x = 0 sufficiently small, then we have the summability of every
component of the formal solution. This completes the proof of Theorem 5.1. O

End of the proof of Theorem 2.1. We shall prove the summability in the direction
n € Spe. By multiplying the equation (2.2) with e~ we see that n, A, p; are
replaced by ne~%, A, and pje?, respectively. Noting that the conditions (2.10)
are satisfied for 0 < 6 < 7/2 — 61, the summability holds for n = e™=0) with
0 < 6 < 7/2 — 6. Hence, the summability holds for —37/2 + 0, < arg n < —m. On
the other hand, we see that (2.10) is satisfied for —7/2 + 6 < 6 < 0. It follows that
the summability holds for —m < arg n < —m/2— 05. Therefore, the summability holds
for —37/2 + 0, < arg n < —mw/2 — 03. Hence, we have the latter half in view of the
definition of Borel sum. This ends the proof of Theorem 2.1. O

6. SOME REMARKS

In Theorem 2.1 we proved Borel summability of v(z,n) when « € U. We study the
summability in the case x # 0. Instead of (2.3) we assume that there exists a € C"
and b € C¥ such that

fla,b) =0,  det(V,f(a,b)) # 0. (6.1)

By an implicit function theorem one can construct vg(z) analytic at © = a such that
vo(a) = b and f(z,v9(z)) =0 in the neighborhood of a. Define ¥y by

Yo = {a; det (Vuf)(,v0(x))) = 0, f(x,v0(x)) = 0}. (6.2)

Observe that a € ¥j. Let Q; € C™ \ Xy be the maximal domain containing a and
not containing the origin on which vg is holomorphic. One can construct the formal
solution v(x,n) in (2.4). By a similar proof like Proposition 3.2 the formal Borel
transform of v(x,n) converges for = in some domain Q' C ©; with compact closure.
For the sake of simplicity we assume ' = € in the following. We study Borel
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summability of v(x,n) with respect to 7 when = € Q. In fact, we have the following
theorem.

Theorem 6.1. Assume that f(x,u) is an entire function of v € C" and u € CN such
that Vo f(z,v0(x)) is a diagonal matriz for every x € 4. Then v(x,n) is 1-summable

in the direction §, 5 < arg £ < 37” with respect to n for any x € 5.

We observe that the condition (2.10) is not necessary in the above theorem. The
proof of Theorem 6.1 is done by modifying the proof of Theorem 2.1. We omit the
details.
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