Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study explores the design and performance of axisymmetric hexachiral honeycombs, utilizing the hexachiral honeycomb framework and axisymmetric design method. Four axisymmetric hexachiral honeycombs with distinct arrangements were developed: left-right symmetry hexachiral honeycomb (LSHH), up-down symmetry hexachiral honeycomb (USHH), central symmetry hexachiral honeycomb (CSHH), and subunits symmetry hexachiral honeycomb (SSHH). The deformation patterns and compression behaviors of these honeycombs were comprehensively examined through experimental and numerical simulations, and comparisons were made with a non-symmetric hexachiral honeycomb (NHH). The results indicate that symmetrically designed honeycombs exhibit a larger mean plateau stress than the asymmetrically designed the NHH during low-velocity impacts. The study further discusses deformation patterns, specific energy absorption, and the negative Poisson's ratio effect across the five honeycombs under different parameters. Notably, symmetrically designed honeycombs demonstrate superior specific energy absorption, and the negative Poisson's ratio effect becomes evident at an impact velocity of 10 m/s. However, the advantages of axisymmetric honeycombs diminish at higher impact velocities of 50 m/s and 100 m/s. The Poisson's ratio effects of symmetric honeycombs weaken with an increase in the circular ligament r of the honeycomb. Additionally, the study identifies that platform stress and SEA increase for honeycombs with horizontal cell numbers greater than 6.
Czasopismo
Rocznik
Tom
Strony
art. no. e77, 2024
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- School of Electronics and Information Engineering, Wuzhou University, Wuzhou, China
autor
- School of Electronics and Information Engineering, Wuzhou University, Wuzhou, China
autor
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
Bibliografia
- 1. Raphael CE, Cooper R, Keegan J, Wage R, Nijjer S, Broyd C, Vassiliou V, Ali A, Collinson J, De Silva R, Frenneaux MP, Stables R, Di Mario C, Pennell D, Francis D, Davies J, Parker KH, Prasad S. Impact of left ventricular outflow tract obstruction and microcirculatory dysfunction on coronary haemodynamics in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(10):A952. https://doi.org/10.1016/s0735-1097(15)60952-4.
- 2. Zhou Y, Li Y, Jiang D, Chen Y, Min Xie Y, Jia L-J. In-plane impact behavior of 3D-printed auxetic stainless honeycombs. Eng Struct. 2022;266:114656. https://doi.org/10.1016/j.engstruct.2022.114656.
- 3. Luo HC, Ren X, Zhang Y, Zhang XY, Zhang XG, Luo C, Cheng X, Xie YM. Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression. Compos Struct. 2022;280:114922. https://doi.org/10.1016/j.compstruct.2021.114922.
- 4. Wei L, Zhao X, Yu Q, Zhang W, Zhu G. In-plane compression behaviors of the auxetic star honeycomb: Experimental and numerical simulation. Aerosp Sci Technol. 2021;115:106797. https://doi.org/10.1016/j.ast.2021.106797.
- 5. Gao Q, Liao W-H, Wang L. On the low-velocity impact responses of auxetic double arrowed honeycomb. Aerosp Sci Technol. 2020;98:105698. https://doi.org/10.1016/j.ast.2020.105698.
- 6. Zhang C, Ba S, Zhao Z, Li L, Tang H, Wang X. Energy absorption characteristics of novel bio-inspired hierarchical anti-tetrachiral structures. Compos Struct. 2023;313:116860. https://doi.org/10.1016/j.compstruct.2023.116860.
- 7. Sorrentino A, Castagnetti D, Mizzi L, Spaggiari A. Bio-inspired auxetic mechanical metamaterials evolved from rotating squares unit. Mech Mater. 2022;173:104421. https://doi.org/10.1016/j.mechmat.2022.104421.
- 8. Cai Z, Deng X. In-plane compression behaviors of novel reentrant double arrowhead honeycombs with two plateau stress regions. Mech Adv Mater Struct. 2024. https://doi.org/10.1080/15376494.2023.2299220.
- 9. Cai Z, Deng X. Mechanical properties of the novel spider-web bionic hierarchical honeycomb under out-of-plane crushing. Appl Phys A. 2024;130(1):57. https://doi.org/10.1007/s00339-023-07248-y.
- 10. Han D, Zhang Y, Zhang XY, Xie YM, Ren X. Mechanical characterization of a novel thickness gradient auxetic tubular structure under inclined load. Eng Struct. 2022;273:115079. https://doi.org/10.1016/j.engstruct.2022.115079.
- 11. Tang H, Zhang C, Li L, Mei C, Ling L, Hu Y. Contribution of tension-torsion coupling effect on elastic properties of chiral and anti-chiral structures. Thin-Walled Struct. 2023;182:110199. https://doi.org/10.1016/j.tws.2022.110199.
- 12. Lu X, Tan VBC, Tay TE. Auxeticity of monoclinic tetrachiral honeycombs. Compos Struct. 2020;241:112067. https://doi.org/10.1016/j.compstruct.2020.112067.
- 13. Gao D, Wang S, Zhang M, Zhang C. Experimental and numerical investigation on in-plane impact behaviour of chiral auxetic structure. Compos Struct. 2021;267:113922. https://doi.org/10.1016/j.compstruct.2021.113922.
- 14. Qin S, Deng X, Yang F, Lu Q. Energy absorption characteristics and negative Poisson’s ratio effect of axisymmetric tetrachiral honeycombs under in-plane impact. Compos Struct. 2023;323:117493. https://doi.org/10.1016/j.compstruct.2023.117493.
- 15. Zhang ET, Liu H, Ng BF. Mechanics of re-entrant anti-trichiral honeycombs with nature-inspired gradient distributions. Int J Mech Sci. 2023;259:108597. https://doi.org/10.1016/j.ijmecsci.2023.108597.
- 16. Mizzi L, Grasselli L, Spaggiari A, Gatt R, Farrugia P-S, Grima JN. Design of isotropic 2D chiral metamaterials based on monohedral pentagonal tessellations. Thin-Walled Struct. 2023;187:110739. https://doi.org/10.1016/j.tws.2023.110739.
- 17. Li K, Zhang Y, Hou Y, Su L, Zeng G, Xu X. Mechanical properties of re-entrant anti-chiral auxetic metamaterial under the inplane compression. Thin-Walled Struct. 2023;184:110465. https://doi.org/10.1016/j.tws.2022.110465.
- 18. Ding H, Guo H, Sun P, Huang S, Yuan T, Wang Y. In-plane dynamic crushing of a novel hybrid auxetic honeycomb with enhanced energy absorption. Mech Adv Mater Struct. 2023. https://doi.org/10.1080/15376494.2023.2204082.
- 19. Wang W-J, Zhang W-M, Guo M-F, Yang J-S, Ma L. Energy absorption characteristics of a lightweight auxetic honeycomb under low-velocity impact loading. Thin-Walled Struct. 2023;185:110577. https://doi.org/10.1016/j.tws.2023.110577.
- 20. Sadegh Ebrahimi M, Hashemi R, Etemadi E. In-plane energy absorption characteristics and mechanical properties of 3D printed novel hybrid cellular structures. J Mater Res Technol. 2022;20:3616-32. https://doi.org/10.1016/j.jmrt.2022.08.064.
- 21. Wang H, Lu Z, Yang Z, Li X. In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions. Int J Mech Sci. 2019;151:746-59. https://doi.org/10.1016/j.ijmecsci.2018.12.009.
- 22. Lu H, Wang X, Chen T. In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson’s ratio and enhanced energy absorption. Thin-Walled Struct. 2021;160:107366. https://doi.org/10.1016/j.tws.2020.107366.
- 23. Kaczynski P, Ptak M, Fernades AOF, Chybowski L, Wilhelm J, de Sousa RJA. Development and testing of advanced cork composite sandwiches for energy-absorbing structures. Materials (Basel). 2019;12(5):697. https://doi.org/10.3390/ma12050697.
- 24. Lu Q, Deng X. Energy absorption and in-plane mechanical behavior of honeycomb structures with reinforced strut. Compos Struct. 2023;322:117399. https://doi.org/10.1016/j.compstruct.2023.117399.
- 25. Deng X, Qin S, Huang J. Out-of-plane impact analysis for a bioinspired sinusoidal honeycomb. Mech Adv Mater Struct. 2021;29(28):7259-76. https://doi.org/10.1080/15376494.2021.1995547.
- 26. Zhong R, Ren X, Yu Zhang X, Luo C, Zhang Y, Min Xie Y. Mechanical properties of concrete composites with auxetic single and layered honeycomb structures. Constr Build Mater. 2022;322:126453. https://doi.org/10.1016/j.conbuildmat.2022. 126453.
- 27. Tabacu S, Stanescu ND. A theoretical model for the estimate of the reaction force for 3D auxetic anti-tetra chiral tubular structures under tensile loads. Thin-Walled Struct. 2021;168:108304. https://doi.org/10.1016/j.tws.2021.108304.
- 28. Yang W, Huang R, Liu J, Liu J, Huang W. Ballistic impact responses and failure mechanism of composite double-arrow auxetic structure. Thin-Walled Struct. 2022;174:109087. https://doi.org/10.1016/j.tws.2022.109087.
- 29. Pan Y, Zhang XG, Han D, Li W, Xu LF, Zhang Y, Jiang W, Bao S, Teng XC, Lai T, Ren X. The out-of-plane compressive behavior of auxetic chiral lattice with circular nodes. Thin-Walled Struct. 2023;182:110152. https://doi.org/10.1016/j.tws.2022.110152.
- 30. Alomarah A, Masood SH, Sbarski I, Faisal B, Gao Z, Ruan D. Compressive properties of 3D printed auxetic structures: experimental and numerical studies. Virtual Phys Prototyp. 2019;15(1):1644184. https://doi.org/10.1080/17452759.2019.1644184.
- 31. Deng X, Liu F, Huang G, Huang J. Multiobjective optimization for the crashworthiness design of bioinspired sinusoidal honeycombs. Appl Phys A. 2022;128(5):438. https://doi.org/10.1007/s00339-022-05583-0.
- 32. Yin H, Zhang W, Zhu L, Meng F, Liu J, Wen G. Review on lattice structures for energy absorption properties. Compos Struct. 2023;304:116397. https://doi.org/10.1016/j.compstruct.2022.116397.
- 33. Qi C, Jiang F, Yang S. Advanced honeycomb designs for improving mechanical properties: a review. Compos B Eng. 2021;227:109393. https://doi.org/10.1016/j.compositesb.2021.109393.
- 34. Deng X, Qin S. In-plane energy absorption characteristics and mechanical properties of novel re-entrant honeycombs. Compos Struct. 2023;313:116951. https://doi.org/10.1016/j.compstruct.2023.116951.
- 35. Chen Y, Huang H, Deng X. In-plane compression characteristics of star-shaped honeycomb with asymmetric cells. Eur J Mech A Solids. 2024;105:105224. https://doi.org/10.1016/j.euromechsol.2024.105224.
- 36. Niu X, Xu F, Zou Z, Fang T, Zhang S, Xie Q. In-plane dynamic crashing behavior and energy absorption of novel bionic honeycomb structures. Compos Struct. 2022;299:116064. https://doi.org/10.1016/j.compstruct.2022.116064.
- 37. Zhang X-C, An C-C, Shen Z-F, Wu H-X, Yang W-G, Bai J-P. Dynamic crushing responses of bio-inspired re-entrant auxetic honeycombs under in-plane impact loading. Mater Today Commun. 2020;23:100918. https://doi.org/10.1016/j.mtcomm.2020.100918.
- 38. Ha NS, Lu G, Xiang X. Energy absorption of a bio-inspired honeycomb sandwich panel. J Mater Sci. 2019;54(8):6286-300. https://doi.org/10.1007/s10853-018-3163-x.
- 39. Deng X, Qin S, Huang J. Crashworthiness analysis of gradient hierarchical multicellular columns evolved from the spatial folding. Mater Des. 2022;215:110435. https://doi.org/10.1016/j.matdes.2022.110435.
- 40. Qi C, Jiang F, Remennikov A, Pei L-Z, Liu J, Wang J-S, Liao X-W, Yang S. Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs. Compos B Eng. 2020;197:108117. https://doi.org/10.1016/j.compositesb.2020.108117.
- 41. Lin H-B, Liu H-T, An M-R. In-plane dynamic impact behaviors of a self-similar concentric star honeycomb with negative Poisson’s ratio. Mater Today Commun. 2022;33:104474. https://doi.org/10.1016/j.mtcomm.2022.104474.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a54f733-b218-403e-9d2c-c3cbe9f183fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.