PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural and Chemical Composition Changes in the Bonding Zone of Explosively Welded Sheets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the effect of heat transfer during explosive welding (EXW) and post-processing annealing on the microstructural and chemical composition changes have been thoroughly analysed using scanning and transmission electron microscopies and X-ray synchrotron radiation. Several combination of explosively welded metal compositions were studied: Ti with Al, Cu with Al, Ta or stainless steel, stainless steel with Zr or Ta and Ti with carbon steel. It was found that the melted metals exhibit a strong tendency to form brittle crystalline, nano-grained or even amorphous phases during the solidification. For all analysed metal combinations most of the phases formed in the zones of solidified melt do not appear in the equilibrium phase diagrams. Concurrently, the interfacial layers undergo severe plastic deformation forming nano-grained structures. It has been established that these heavily deformed areas can undergo dynamic recovery and recrystallization already during clad processing. This leads to the formation of new stress-free grains near the interface. In the case of low temperature and short time post processing annealing only the melted zones and severely deformed layers undergo recovery and recrystallization. However, drastic changes in the microstructure occurs at higher temperature and for longer annealing times. Applying such conditions leads to diffusion dominant processes across the interface. As a consequence continuous layers of intermetallic phases of equilibrium composition are obtained.
Twórcy
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland)
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland)
autor
  • ZTW Explomet, Opole (Poland)
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland)
autor
  • ZTW Explomet, Opole (Poland)
Bibliografia
  • [1] T. Z. Blazynski (ed.): Explosive Welding, Forming and Compaction, Applied Science Publishers LTD, New York (1983).
  • [2] B. Crossland, Explosive welding of metals and its application, Clarendon Press Oxford (1982).
  • [3] V. I. Lysak, S. V. Kuzmin, Explosive welding of metal layered composite materials. In: Paton BE, editor. Ukraine. Kiev: E. O. Paton Electric Welding Institute (2003).
  • [4] F. Findik, Recent developments in explosive welding, Mater. Des. 32, 1081-1093 (2011).
  • [5] H. Paul, W. Skuza, R. Chulist, M. Miszczyk, A. Gałka, M. Prażmowski, J. Pstruś, The effect of detonation velocity and stand-off distance on the interface morphology and electro-mechanical properties of Ti/Cu clad composites produced by explosive welding, Metall. Mater. Trans. A (2019) submitted.
  • [6] R. Mendes, B. Ribeiro, A. Loureiro, Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration, Mater. Des. 51, 182-192 (2013).
  • [7] A. Durgutlu, B. Gulenc, F. Findik, Examination of copper/stainless steel joints formed by explosive welding, Mater. Des. 26 (6), 497-507 (2005).
  • [8] Z. Livne, A. Munitz, Characterization of explosively bonded iron and copper plates, J. Mat. Sci. 22, 1495-1500 (1987).
  • [9] A. Durgutlu, H. Okuyucu, B. Gulec, Investigations of effect of stand-off distance on interface characteristics of explosively welded copper and stainless steel, Mater. Des. 29, 1480-1484 (2008).
  • [10] N. Kahraman, N. Gulec, F. Findik, Joining of titanium/stainless steel and effect on interface, J. Mat. Proc. Technol. 171, 241-249 (2005).
  • [11] N. Kahraman, B. Gülenç, Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process, J. Mater. Proc. Techn. 169, 67-71 (2005).
  • [12] D. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypień, A. Kornewa, Z. Szulc, N. Schell, P. Zieba, Structural properties of Ti/Al. clads manufactured by explosive welding and annealing, Mater. Des. 91, 80-89 (2016).
  • [13] D.V. Lazurenko, I. A. Bataev, V. I. Mali, A. A. Bataev, Iu. N. Milutina, V. S. Lozhlin, M. A. Esikov, A.M.J. Jorge, Explosively welded multilayer Ti-Al composite: Structure and transformation during heat treatment, Mater. Des. 102, 122-130 (2016).
  • [14] I. A. Bataev, D. V. Lazurenko, S. Tanaka, K. Hokamoto, A. A. Bataev, Y. Guo, A. M. Jorge Jr., High cooling rates and metastable phases at the interfaces of explosively welded materials, Acta Mater. 135, 277-289 (2017).
  • [15] H. Paul, L. Lityńska-Dobrzyńska, M. Prażmowski, Microstructure and phase constitution near the interface of explosively welded aluminium/copper plates, Metall. Mater. Trans. A 44A, 3836-3851 (2013).
  • [16] H. Paul, J. Morgiel, M. Faryna, M. Prażmowski, M. Miszczyk, Microstructure and interfacial reactions in the bonding zone of explosively welded Zr700 and carbon steel plates, Int. J. Mater. Res. 106 (7), 782-792 (2015).
  • [17] H. Paul, M. M. Miszczyk, R. Chulist, M. Prażmowski, J. Morgiel, A. Gałka, M. Faryna, F. Brisset, Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets, Mater. Des. 153, 177-189 (2018).
  • [18] J. Song, A. Kostka, M. Veehmayer, D. Raabe, Hierarchical microstructure of explosive joints: Example of titanium to steel cladding, Mater. Sci. Eng. A 528A, 2641-2647 (2011).
  • [19] H. Paul, M. Faryna, M. Prażmowski, R. Banski, Changes in the bonding zone of explosively welded sheets, Arch. Metall. Mater. 56, 463-474 (2011).
  • [20] R. Chulist, L. Straka, A. Sozinov, T. Lippmann, W. Skrotzki, Modulation re-orientation in 10M Ni-Mn-Ga martensite, Scripta Mater. 68, 671-674 (2013).
  • [21] B. Wronka, Testing of explosive welding and welded joints: joint mechanism and properties of explosive welded joints, J. Mater. Sci. 45, 4078-40-83 (2010).
  • [22] Paul, H., Miszczyk, M., Prazmowski, M. Experimental investigation of texture gradients in aluminium/copper plates bonded through explosive welding process, Mater. Sci. Forum 702-703, 603-606 (2012).
  • [23] H. Paul, J. Morgiel, T. Baudin, F. Brisset, M. Prażmowski, M. Miszczyk, Characterization of Explosive Weld Joints by TEM and SEM Orientation Imaging Microscopy, Arch. Metall. Mater. 59, 1129-1136 (2014).
  • [24] Q. Chu, M. Zhang, J. Li, Ch. Yan, Experimental and numerical investigation of microstructure and mechanical behaviour of titanium/steel interface prepared by explosive welding, Mater. Sci. Eng. A 689, 323-331 (2017).
  • [25] Y. Guo, G. Liu, H. Jin, Z. Shi, G. Qiao, Intermetallic phase formation in diffusion-bonded Cu/Al laminates, J. Mater. Sci. 46, 2467-2473 (2011).
  • [26] H. H. Yan, X. Y. Li, Theoretical explanation for amorphous phase emerging across the interface during explosive welding, Rare Met. Mater. Eng. 32, 176-178 (2003).
  • [27] M. M. Miszczyk, H. Paul, J. H. Driver, P. Drzymała, Recrystallization nucleation in stable aluminium-base single crystals: Crystallography and mechanisms, Acta Mater. 125, 109-124 (2017).
  • [28] M. M. Miszczyk, H. Paul, J. H. Driver, J. Poplewska, The influence of deformation texture on nucleation and growth of cube grains during primary recrystallization of AA1050 alloy, Acta Mater. 129, 378-387 (2017).
Uwagi
EN
1. This work was supported by the Polish National Centre of Science (NCN), project no.: UMO-2016/21/B/ST8/00462. The authors would like to take this opportunity to express their appreciation.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a4dda91-5548-4e30-9102-4bef6e7aced5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.