PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the spectral separation of dye mixtures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fluorescent tracers technique for determining hydraulic and transport parameters in the field and in the laboratory is well established. Common practices include the use of multiple dyes in branches of convergent streams, or the use of multiple dyes to control the quality of the results. However, the quantification of dye mixtures cannot be done correctly by calibration curves constructed from fluorescence intensity peaks. This problem arises because the characteristic wavelengths of the tracers are close, and their fluorescence spectra are wide, which leads to mutual interference in samples containing mixtures of dyes. To assess a spectral separation method, a set of standard solutions containing single tracer and binary mixtures of dyes was prepared and measured using a spectrofluorometer. The fluorescence spectra were processed by software routines written for background subtraction and spectral separation. Pearson Type VII curves fitted well to the fluorescence spectra of the selected dyes and were used to calculate the contribution of each tracer in the mixture by an additive model. The difference between the calculated and the nominal values was smaller after spectral separation and dependent on the concentration ratio of the tracers. Mixtures that had one of the dyes in low concentration could not be detected by the traditional peak method but could be detected and quantified after spectral separation. The support of software routines can lead to higher productivity and improved data quality, and a spectral separation method should be a standard procedure for measuring dye mixtures.
Czasopismo
Rocznik
Strony
2423--2435
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Ocean Engineering Program/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco C sala 209, Rio de Janeiro, Brazil
  • School of Chemistry/POLI, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco I sala 104D, Rio de Janeiro, Brazil
Bibliografia
  • 1. Alexander SC (2005) Spectral deconvolution and quantification of natural organic material and fluorescent tracer dyes. In: Sinkholes and the engineering and environmental impacts of Karst. Proceedings of the 10th Multidisciplinary Conference. Sept. San Antonio, Texas. ASCE Geotechnical Special Publication 144, pp. 441–448. https://doi.org/10.1061/40796(177)47
  • 2. André JC, Molinari J (1976) Mises au point sur les differents facteurs physicochimiques influant sur la mesure de concentration de traceurs fluorescents et leurs consequences pratiques en hydrologie. J Hydrol 30(3):257–285
  • 3. Behrens H (1970) Zur Messung von Fluoreszenzfarbstoffen [For the measurement of fluorescent dyes]. Jahresbericht 1969 GSF-Bericht R 25, 92–96. Inst. f. Radiohydrometrie, Munich, Germany
  • 4. Behrens H (1988) Quantitative Bestimmung von Uranin, Eosin und Pyranin in Gemischen mittels Fluoreszenzmessung bei definierten pH-Werten [Quantitative determination of Uranine, Eosine, and Pyranine in mixtures under control of the pH]. Steir Beitr z Hydrogeol 39:117–129
  • 5. Behrens H, Beims U, Dieter H, Dietze G, Eikmann T, Grummt T, Hanisch H, Henseling H, Käß W, Kerndorff H, Leibundgut C, Müller-Wegener U, Rönnefahrt I, Scharenberg B, Schleyer R, Schloz W, Tilkes F (2001) Toxicological and ecotoxicological assessment of water tracers. Hydrogeol J 9(3):321–325. https://doi.org/10.1007/s100400100126
  • 6. Benischke R (1989) Fluorescent tracers in hydrology. Institute for Geothermics and Hydrogeology, Joanneum Research. Graz, Austria. 84pp
  • 7. Benischke R (2021) Review: advances in the methodology and application of tracing in karst aquifers. Hydrogeol J 29:67–88. https://doi.org/10.1007/s10040-020-02278-9
  • 8. Clayton CG, Evans GV (1968) The constant-rate-injection and velocity methods of flow measurement for testing hydraulic machines. Technical Report AERE-R–5872. United Kingdom Atomic Energy Authority, Wantage, England
  • 9. EPA (2003) Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (EHTD) Program. Technical Report EPA/600/R-03/034B. U.S. Environmental Protection Agency, Washington, DC
  • 10. Gerke KM, Sidle RC, Mallants D (2013) Criteria for selecting fluorescent dye tracers for soil hydrological applications using Uranine as an example. J Hydrol Hydromech 61(4):313–325. https://doi.org/10.2478/johh-2013-0040
  • 11. Gupta SK (1998) Peak decomposition using pearson type VII function. J Appl Cryst 31(3):474–476. https://doi.org/10.1107/S0021889897011047
  • 12. Hall MM, Veeraraghavan VG, Rubin H, Winchell PG (1977) The approximation of symmetric X-ray peaks by Pearson type VII distributions. J Appl Cryst 10(1):66–68. https://doi.org/10.1107/S0021889877012849
  • 13. Holley ER (1977) Dilution method of discharge measurement in pipes. In: Proceedings of the symposium on flow measurement in open channels and closed conduits, Gaithersburg, Maryland, February, vol 1. US Department of Commerce, National Bureau of Standards, Washington, D.C., pp 395–421
  • 14. ISO (1975) ISO 2975–2: measurement of water flow in closed conduits – Tracer methods – Part II: constant rate injection method using non-radioactive tracers. International Organization for Standardization, Geneve, Switzerland
  • 15. ISO (1987) ISO 5198: centrifugal, mixed flow and axial pumps – Code for hydraulic performance tests – Precision grade. International Organization for Standardization, Geneve, Switzerland
  • 16. ISO (1992) ISO 9555–4: measurement of liquid flow in open channels – Tracer dilution methods for the measurement of steady flow – Part 4: Fluorescent tracers. International Organization for Standardization, Geneve, Switzerland
  • 17. Käss W (1967) Erfahrungen mit Uranin bei Färbversuchen. Steirische Beiträge Zur Hydrogeologie Jahrgang 1966/1967:123–134
  • 18. Käss W (1998) Tracing technique in geohydrology. CRC Press, Boca Raton
  • 19. Kilpatrick FA, Cobb ED (1985) Measurement of discharge using tracers. U.S. Geological Survey Techniques of Water-Resources Investigations. Application of hydraulics, Book 3, Chapter A16. U.S. Geological Survey, VA. https://pubs.usgs.gov/twri/twri3-a16/. Accessed 22 Nov 2021
  • 20. Kilpatrick FA, Sayre WW, Richardson EV (1967) Flow measurements with fluorescent tracers (a discussion). J Hydraul Div ASCE 93(4):298–308. https://doi.org/10.1061/JYCEAJ.0001660
  • 21. Knöll P, Scheytt T (2018) A tracer test to determine a hydraulic connection between the Lauchert and Danube karst catchments (Swabian Alb, Germany). Hydrogeol J 26(2):429–437. https://doi.org/10.1007/s10040-017-1678-x
  • 22. Leibundgut C, Maloszewski P, Külls C (2009) Tracers in hydrology. Wiley, Chichester
  • 23. Lloyd J (1971) Synchronized excitation of fluorescence emission spectra. Nat Phys Sci 231:64–65. https://doi.org/10.1038/physci231064a0
  • 24. Pecly JOG, Fernandes SRC (2017) Ancillary device for flow rate measurement using dye tracer technique. Flow Meas Instrum 54:274–282. https://doi.org/10.1016/j.flowmeasinst.2015.11.001
  • 25. Poulain A, Rochez G, Van Roy J-P, Dewaide L, Hallet V, De Sadelaer G (2017) A compact field fluorometer and its application to dye tracing in karst environments. Hydrogeol J 25(1):1517–1524. https://doi.org/10.1007/s10040-017-1577-1
  • 26. Replogle JA, Myers LE, Brust KJ (1966) Flow measurements with fluorescent tracers. J Hydraul Div 92(5):1–15. https://doi.org/10.1061/JYCEAJ.0001499
  • 27. Romanowicz RJ, Osuch M, Wallis S (2013) Modelling of solute transport in rivers under different flow rates: a case study without transient storage. Acta Geophys 61:98–125. https://doi.org/10.2478/s11600-012-0050-8
  • 28. Skoog DA, West DM, Holler FJ (1988) Fundamentals of analytical chemistry. Saunders College Publishing, New York
  • 29. Subhash N, Mohanan CN (1997) Curve-fit analysis of chlorophyll fluorescence spectra: application to nutrient stress detection in sunflower. Remote Sens Environ 60(3):347–356. https://doi.org/10.1016/S0034-4257(96)00217-9
  • 30. Tucker RB, Crawford NC (1999) Non-linear curve fitting analysis as a tool for identifying and quantifying multiple fluorescence tracer dyes. In: Beck BF, Petit AJ, Herring JG (eds) Hydrogeology and engineering geology of sinkholes and karst – 1999. Balkema, Rotterdam, pp 307–314
  • 31. Wilson JF, Cobb ED and Kilpatrick FA (1984) Fluorometric procedures for dye tracing. Open-File Report 84–234. U.S. Geological Survey, Reston, VA. 69pp. https://doi.org/10.3133/ofr84234
  • 32. WMO (2008) Guide to hydrological practices. Vol. I, Hydrology – From measurement to hydrological information. WMO-No. 168, 6th ed. World Meteorological Organization, Geneva, Switzerland
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a47dcdb-956e-477d-8024-172689e87e22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.