PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-step inversion of airborne geophysical data: a stable downward continuation approach for physical modelling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Airborne potential field geophysical survey is employed for a variety of purposes to cover in a cost-effective manner large prospect areas. Despite the many advantages of airborne data measurements, due to the height from the ground, the received response is weakened (signal attenuation) and causes inadequacies in data representation. Accordingly, it is expected that the inversion results are far from reality and there are shortcomings in the retrieved model. This study investigates the impact of airborne survey on small-sized magmatic units, where directly inverting airborne data suffer from signal attenuation and lead to the loss of the causative model. In this study we improved the airborne data inversion by mixing a two-step cooperative approach which enhances the potential field data by a stable downward continuation to the ground surface in the spectral domain, and subsequently running a physical property modelling. The efficiency of the method over one-step airborne data inversion is examined for a synthetic multi-source case (magnetic and gravity) and then is used to find out the close spatial link between magnetometry signatures and iron–phosphate sources in the Esfordi district in Iran. The results showed that the proposed method performed better than direct inversion of airborne data and could satisfactorily identify the sources of the anomaly.
Czasopismo
Rocznik
Strony
121--139
Opis fizyczny
Bibiliogr. 62 poz.
Twórcy
autor
  • School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
autor
  • School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
Bibliografia
  • 1. Abedi M (2019) AIRRLS: an augmented iteratively re-weighted and refined least squares algorithm for inverse modeling of magnetometry data. J Geol Res 1(3):16–27
  • 2. Abedi M, Norouzi GH (2016) A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data. Int J Appl Earth Obs Geoinf 46:31–44
  • 3. Abedi M, Gholami A, Norouzi GH (2013) A stable downward continuation of airborne magnetic data: a case study for mineral prospectivity mapping in Central Iran. Comput Geosci 52:269–280
  • 4. Abedi M, Gholami A, Norouzi GH (2014) A new stable downward continuation of airborne magnetic data based on Wavelet deconvolution. Near Surf Geophysic 12(6):751–762
  • 5. Abedi M, Fournier D, Devriese SGR, Oldenburg DW (2018) Integrated inversion of airborne geophysics over a structural geological unit: a case study for delineation of a porphyry copper zone in Iran. J Appl Geophys 152:188–202
  • 6. Alatorre-Zamora MA, Campos-Enriquez JO, Fregoso E, Belmonte-Jiménez SI, Chávez-Segura R, Gaona-Mota M (2020) Basement faults deduction at a dumpsite using advanced analysis of gravity and magnetic anomalies. Near Surf Geophysic 18(3):307–331
  • 7. Alberts B, Klees R (2004) A comparison of methods for the inversion of airborne gravity data. J Geodesy 78(1–2):55–65
  • 8. Ali AEOA, Liu Z, Bai Y, Farwa AG, Ahmed AS, Peng G (2018) A stable gravity downward continuation for structural delineation in Sulu Sea region. J Appl Geophys 155:26–35
  • 9. Aster RC, Borchers B, Thurber CH (2003) Parameter estimation and inverse problems. Academic Press, New York, NY
  • 10. Baumann H, Klingelé E, Marson I (2012) Absolute airborne gravimetry: a feasibility study. Geophys Prospect 60(2):361–372
  • 11. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press
  • 12. Christensen NB (2018) Interpretation attributes derived from airborne electromagnetic inversion models using the continuous wavelet transform. Near Surf Geophysic 16(6):665–678
  • 13. Cooper G (2019) The downward continuation of aeromagnetic data from magnetic source ensembles. Near Surf Geophysic 17(2):101–107
  • 14. Dannemiller N, Li Y (2006) A new method for determination of magnetization direction. Geophysics 71(6):L69–L73
  • 15. Devriese SG, Davis K, Oldenburg DW (2017) Inversion of airborne geophysics over the DO-27/DO-18 kimberlites—Part 1: potential fields. Interpretation 5(3):T299–T311
  • 16. Fournier D, Oldenburg DW (2019) Inversion using spatially variable mixed lp norms. Geophys J Int 218(1):268–282
  • 17. Gandhi S, Sarkar B (2016) Essentials of mineral exploration and evaluation. Elsevier
  • 18. Ghorbani M (2013) Economic geology of Iran, vol 581. Springer
  • 19. Hansen PC, O’Leary DP (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14(6):1487–1503
  • 20. Jami M, Dunlop AC, Cohen DR (2007) Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit. Cent Iran Econ Geol 102(6):1111–1128
  • 21. Jami M (2006) Geology, geochemistry and evolution of the Esfordi phosphate-iron deposit, Bafq area, Central Iran. PhD thesis, University of New South Wales.
  • 22. LaFehr TR, Nabighian MN (2012) Fundamentals of gravity exploration. Society of Exploration Geophysicists
  • 23. Last B, Kubik K (1983) Compact gravity inversion. Geophysics 48(6):713–721
  • 24. Lelièvre PG, Oldenburg DW (2006) Magnetic forward modelling and inversion for high susceptibility. Geophys J Int 166(1):76–90
  • 25. Lelièvre PG, Oldenburg DW, Williams NC (2009) Integrating geological and geophysical data through advanced constrained inversions. Explor Geophys 40(4):334–341
  • 26. Lelièvre PG, Farquharson CG, Hurich CA (2012) Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics 77(1):K1–K15
  • 27. Lelièvre PG (2009) Integrating geologic and geophysical data through advanced constrained inversions. PhD Thesis, University of British Columbia, p. 157
  • 28. Li Y, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61(2):394–408
  • 29. Li Y, Oldenburg DW (1998) 3-D inversion of gravity data. Geophysics 63(1):109–119
  • 30. Li Y, Oldenburg DW (2000) Joint inversion of surface and three-component borehole magnetic data. Geophysics 65(2):540–552
  • 31. Li Y, Oldenburg DW (2003) Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys J Int 152(2):251–265
  • 32. Li Y, Shearer SE, Haney MM, Dannemiller N (2010) Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization. Geophysics 75(1):L1–L11
  • 33. Li Y, Devriese SGR, Krahenbuhl RA, Davis K (2013) Enhancement of magnetic data by stable downward continuation for UXO application. IEEE Trans Geosci Remote Sens 51:3605–3614
  • 34. Lin Y, Wohlberg B (2008) Application of the UPRE method to optimal parameter selection for large scale regularization problems. Paper presented at the 2008 IEEE Southwest Symposium on Image Analysis and Interpretation.
  • 35. Liu S, Hu X, Xi Y, Liu T (2015a) 2D inverse modelling for potential fields on rugged observation surface using constrained delaunay triangulation. Comput Geosci 76:18–30
  • 36. Liu X, Li Y, Xiao Y, Guan B (2015b) Downward continuation of airborne geomagnetic data based on two iterative regularization methods in the frequency domain. Geodesy Geodyn 6(1):34–40
  • 37. Ma G, Liu C, Huang D, Li L (2013) A stable iterative downward continuation of potential field data. J Appl Geophys 98:205–211
  • 38. Mansi A, Capponi M, Sampietro D (2018) Downward continuation of airborne gravity data by means of the change of boundary approach. Pure Appl Geophys 175(3):977–988
  • 39. Menke W (1989) Geophysical data analysis: discrete inverse theory. Academic Press Inc
  • 40. Nabatian G, Rastad E, Neubauer F, Honarmand M, Ghaderi M (2015) Iron and Fe–Mn mineralisation in Iran: implications for Tethyan metallogeny. Aust J Earth Sci 62(2):211–241
  • 41. Oldenburg DW, Li Y (2005) Inversion for applied geophysics: A tutorial. Society of Exploration Geophysicists, Near-surface geophysics, pp 89–150
  • 42. Pašteka R, Richter F, Karcol R, Brazda K, Hajach M (2009) Regularized derivatives of potential fields and their role in semi-automated interpretation methods. Geophys Prospect 57(4):507–516
  • 43. Pignatelli A, Nicolosi I, Chiappini M (2006) An alternative 3D inversion method for magnetic anomalies with depth resolution. Ann Geophys 49:1021–1027
  • 44. Pilkington M (1997) 3-D magnetic imaging using conjugate gradients. Geophysics 62(4):1132–1142
  • 45. Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 64(3):874–887
  • 46. Portniaguine O, Zhdanov MS (2002) 3-D magnetic inversion with data compression and image focusing. Geophysics 67(5):1532–1541
  • 47. Sapia V, Viezzoli A, Oldenborger G (2015) Joining multiple AEM datasets to improve accuracy, cross calibration and derived products: the Spiritwood VTEM and AeroTEM case study. Near Surface Geophysics 13(1):61–72
  • 48. Siemon B, Christiansen AV, Auken E (2009) A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surface Geophysics 7(5):629–646
  • 49. Singh A (2020) Triangular grid-based fuzzy cross-update inversion of gravity data: case studies from mineral exploration. Nat Resour Res 29(1):459–471
  • 50. Singh A, Biswas A (2016) Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries. Nat Resour Res 25(3):297–314
  • 51. Spicer B, Morris B, Ugalde H (2011) Structure of the rambler rhyolite, Baie Verte Peninsula, Newfoundland: inversions using UBC-GIF Grav3D and Mag3D. J Appl Geophys 75(1):9–18
  • 52. Sun J, Li Y (2015) Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics 80(4):ID1–ID18
  • 53. Taghipour S, Kananian A, Mackizadeh MA, Somarin AK (2015) Skarn mineral assemblages in the Esfordi iron oxide–apatite deposit, Bafq district. Cent Iran Arab J Geosci 8(5):2967–2981
  • 54. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Washington, D.C, Winston
  • 55. Vallée MA, Smith RS (2009) Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints. Near Surface Geophysics 7(1):63–71
  • 56. Vogel CR (2002) Computational methods for inverse problems. SIAM
  • 57. Williams NC (2008) Geologically-constrained UBC–GIF gravity and magnetic inversions with examples from the Agnew-Wiluna greenstone belt. University of British Columbia, Western Australia
  • 58. Yunxuan Z (1993) Radon transform application to the improved gridding of airborne geophysical survey data. Geophys Prospect 41(4):459–494
  • 59. Zeng X, Liu D, Li X, Chen D, Niu C (2014) An improved regularized downward continuation of potential field data. J Appl Geophys 106:114–118
  • 60. Zhang H, Ravat D, Hu X (2013) An improved and stable downward continuation of potential field data: the truncated taylor series iterative downward continuation method. Geophysics 78(5):J75–J86
  • 61. Zhang Y, Yan J, Li F, Chen C, Mei B, Jin S, Dohm JH (2015) A new bound constraints method for 3-D potential field data inversion using Lagrangian multipliers. Geophys J Int 201(1):267–275
  • 62. Zhang C, Lü Q, Yan J, Qi G (2018) Numerical solutions of the mean-value theorem: new methods for downward continuation of potential fields. Geophys Res Lett 45(8):3461–3470
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a459ad0-a6da-4d55-823f-ae4a951050e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.