PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of Adaptive Fuzzy Logic on the regulation of induction motor speed

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ Adaptive Fuzzy Logic na regulację prędkości silnika indukcyjnego
Języki publikacji
EN
Abstrakty
EN
This study presents a novel approach to developing an adaptive fuzzy logic controller to regulate the speed of a three-phase induction motor. In this paper, we introduce the motor model and various control schemes, such as vector control and PI controllers. We use simulations to test how well two fuzzy controllers, RLF3 and RLF5, can accurately track speed and ignore disturbances, and then we compare their performance to that of a PI controller. Ultimately, it was discovered that fuzzy controllers, particularly the RLF5 controller, possess the ability to diminish the PI response while also exhibiting enhanced speed, greater resilience to parameter variations, and reduced power consumption.
PL
Niniejszy dokument przedstawia zaprojektowany adaptacyjny sterownik logiczny do regulacji prędkości silnika indukcyjnego trójfazowego. Przedstawiamy schematy sterowania i modele silnika, w tym sterowniki wektorowe i PI. Symulacje pokazują, że wydajność sterowników RLF3 i RLF5 w zakresie śledzenia prędkości i odrzucania zakłóceń jest porównywalna z wydajnością sterownika PI. Stwierdzono ostatecznie, że niejasne sterowniki, zwłaszcza RLF5, mogą zmniejszyć reakcję PI, jednocześnie będąc szybszymi, bardziej odpornymi na zmiany parametrów i zużywającymi mniej energii.
Rocznik
Strony
135--139
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Department of Sciences and Technology, University of Tamanghasset, Algeria
  • Laboratory Smart Grid and Renewable Energy SGRE University Tahri Mohame Bechar Algeria
  • Department of Sciences and Technology, University of Tamanghasset, Algeria
  • Department of Sciences and Technology, University of Tamanghasset, Algeria
Bibliografia
  • [1] Z. Kara and K. Barra, ‘Hybrid Controller for Variable Speed Wind Energy Conversion System with Slip Energy Recovery Using Matrix Converter Topology’, Periodica Polytechnica Electrical Engineering and Computer Science, vol. 59, no. 4, Art. no. 4, Dec. 2015, doi: 10.3311/PPee.8507.
  • [2] 'Direct power control of a DFIG fed by a seven-level inverter using SVM strategy’, ijSmartGrid, 10.20508/ijsmartgrid.v3i2.47.g46. 2019, doi:
  • [3]S. R. Mahapatro, B. Subudhi, and S. Ghosh, ‘Adaptive Fuzzy PI Controller Design for Coupled Tank System:An Experimental Validation’, IFAC Proceedings Volumes, vol. 47, no. 1, pp. 878–881, Jan. 2014, doi: 10.3182/20140313-3-IN-3024.00112.
  • [4]I. K. Bousserhane, A. Hazzab, M. Rahli, M. Kamli, and B. Mazari, ‘Adaptive PI Controller using Fuzzy System Optimized by Genetic Algorithm for Induction Motor Control’, in 2006 IEEE International Power Electronics Congress, Oct. 2006, pp. 1–8. doi: 10.1109/CIEP.2006.312162.
  • [5] S. M. Tripathi, A. Mishra, and A. K. Pandey, ‘High performance speed tracking of CSI-fed SCIM drive employing a variable gain proportional-integral (VGPI) speed controller’, Journal of Electrical Systems and Information Technology, vol. 5, no. 3, pp. 635–652, Dec. 2018, doi: 10.1016/j.jesit.2017.08.001.
  • [6] N. Hartgenbusch, A. Thünen, and R. W. D. Doncker, ‘Optimized Pulse Patterns for Salient Synchronous Machines’, IEEJ Journal of Industry Applications, vol. 10, no. 6, pp. 740 747, 2021, doi: 10.1541/ieejjia.21001231.
  • [7] A. Alkhayyat et al., ‘Fuzzy logic, genetic algorithms, and artificial neural networks applied to cognitive radio networks: A review’, International Journal of Distributed Sensor Networks, vol. 18, no. 7, p. 15501329221113508, Jul. 2022, doi: 10.1177/15501329221113508.
  • [8] V. T. Ha and P. T. Giang, ‘Control for induction motor drives using predictive model stator currents and speeds control’, International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 13, no. 4, Art. no. 4, Dec. 2022, doi: 10.11591/ijpeds.v13.i4.pp2005-2013.
  • [9] A. Herizi, R. Rouabhi, and A. Zemmit, ‘Speed control of doubly fed induction motor using backstepping control with interval type-2 fuzzy controller’, Diagnostyka, vol. 24, no. 3, pp. 1–8, Jun. 2023, doi: 10.29354/diag/166460.
  • [10] L. A. Zadeh, ‘Fuzzy sets’, Information and Control, vol. 8, no. 3, pp. 338–353, Jun. 1965, doi: 10.1016/S0019-9958(65)90241-X.
  • [11] O. Yazdanbakhsh and S. Dick, ‘A systematic review of complex fuzzy sets and logic’, Fuzzy Sets and Systems, vol. 338, pp. 1 22, May 2018, doi: 10.1016/j.fss.2017.01.010.
  • [12] O. D. Rocha Filho and G. L. de Oliveira Serra, ‘Recursive fuzzy instrumental variable based evolving neuro-fuzzy identification for non-stationary dynamic system in a noisy environment’, Fuzzy Sets and Systems, vol. 338, pp. 50–89, May 2018, doi: 10.1016/j.fss.2017.05.016.
  • [13] G. Kron, ‘Generalized Theory of Electrical Machinery’, Transactions of the American Institute of Electrical Engineers, vol. 49, no. 2, pp. 666–683, Apr. 1930, doi: 10.1109/T AIEE.1930.5055554.
  • [14] S. Palanivel, P. Srinivas, and V. T. Ranganathan, ‘A new rotor time constant adaptation method for a VSI fed indirect field oriented induction motor drive’, in Proceedings of International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, Jan. 1996, pp. 222–228 vol.1. doi: 10.1109/PEDES.1996.539545.
  • [15] K. Bouhoune, K. Yazid, M. S. Boucherit, and A. Chériti, ‘Hybrid control of the three phase induction machine using artificial neural networks and fuzzy logic’, Applied Soft Computing, vol. 55, pp. 289–301, Jun. 2017, doi: 10.1016/j.asoc.2017.01.048.
  • [16] G. Abdelhak, B. S. Ahmed, and R. Djekidel, ‘Fault diagnosis of induction motors rotor using current signature with different signal processing techniques’, Diagnostyka, vol. 23, no. 2, pp. 1–9, Mar. 2022, doi: 10.29354/diag/147462.
  • [17] H. Benbouhenni, H. Gasmi, I. Colak, N. Bizon, and P. Thounthong, ‘Synergetic-PI controller based on genetic algorithm for DPC-PWM strategy of a multi-rotor wind power system’, Sci Rep, vol. 13, no. 1, Art. no. 1, Aug. 2023, doi: 10.1038/s41598-023-40870-7.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a3a9d3d-e42a-4081-9b9e-58886643a72a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.