PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural performance of concrete beams reinforced with steel-FRP composite bars

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flexural performance of concrete beams reinforced with steel–FRP composite bar (SFCB) was investigated in this paper. Eight concrete beams reinforced with different bar types, namely one specimen reinforced with steel bars, one with fiber-reinforced polymer (FRP) bars and four with SFCBs, while the last two with hybrid FRP/steel bars, were tested to failure. Test results showed that SFCB/hybrid reinforced specimens exhibited improved stiffness, reduced crack width and larger bending capacity compared with FRP-reinforced specimen. According to compatibility of strains, materials’ constitutive relationships and equilibrium of forces, two balanced situations, three different failure modes and balanced reinforcement ratios as well as analytical technique for predicting the whole loading process are developed. Simplified formulas for effective moment of inertia and crack width are also proposed. The predicted results are closely correlated with the test results, confirming the validity of the proposed formulas for practical use.
Rocznik
Strony
380--396
Opis fizyczny
Bibliogr. 31 poz., fot., rys., wykr.
Twórcy
autor
  • College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
  • College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, China
autor
  • College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
  • Department of Civil Engineering, University of Bradford, Bradford BD71DP, UK
autor
  • College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, China
autor
  • College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
Bibliografia
  • [1] Masmoudi R, Theriault M, Benmokrane B. Behavior of concrete beams reinforced with deformed fiber-reinforced plastic rods. ACI Struct J. 1998;95(6):665–75.
  • [2] Grace NF, Sayed GA, Soliman AK, et al. Strengthening reinforced concrete beams under fiber-reinforced polymer (FRP) laminates. ACI Struct J. 1999;96(5):865–75.
  • [3] Pecce M, Manfredi G, Cosenza E. Experimental response and code models of GFRP RC beams in bending. J Compos Constr. 2000;4(4):182–90.
  • [4] Aiello MA, Ombres L. Load-deflection analysis of FRP-reinforced concrete flexural members. J Compos Constr. 2000;4(4):164–70.
  • [5] Gravina RJ, Smith ST. Flexural behavior of indeterminate concrete beams reinforced with FRP bars. Eng Struct. 2008;30(9):2370–80.
  • [6] Xue W, Zheng Q, Yang Y. Calculation method for deflection of concrete beams reinforced with FRP rebars. J Hydraul Eng. 2008;39(7):883–8.
  • [7] Qi A, Weng C. Experiment Study on the mechanical behavior of continuous beams reinforced with FRP rebars. China Civ Eng J. 2008;41(5):2–7.
  • [8] Tu Y, Zhang J, Qian Y, et al. Experimental and theoretical investigation of flexural load-carrying capacity of concrete beams reinforced with AFRP tendons. J Southeast Univ Nat Sci Ed. 2009;39(3):564–68.
  • [9] Skuturna T, Valivonis J. The statistical evaluation of design methods of the load-carrying capacity of flexural reinforced concrete elements strengthened with FRP. Arch Civ Mech Eng. 2015;15(1):214–22.
  • [10] Lapko A, Urbański M. Experimental and theoretical analysis of deflections of concrete beams reinforced with basalt rebar. Arch Civ Mech Eng. 2015;15(1):223–30.
  • [11] Zhou D, Lei Z, Wang J. In-plane behavior of seismically damaged masonry walls repaired with external BFRP. Compos Struct. 2013;102:9–19.
  • [12] Mahroug MEM, Ashour AF, Lam D. Experimental response and code modelling of continuous concrete slabs reinforced with BFRP bars. Compos Struct. 2014;107(1):664–74.
  • [13] Lau D, Pam HJ. Experimental study of hybrid FRP reinforced concrete beams. Eng Struct. 2010;32:3857–65.
  • [14] Huang H. Experimental study of steel-GFRP reinforced concrete beam. Shanghai: Tongji University; 2004.
  • [15] Ge W-J, Ashour AF, Jiamin Yu, Gao P, Cao D-F, Cai C, Ji X. Flexural behavior of ECC-concrete hybrid composite beams reinforced with FRP and steel bars. J Compos Constr. 2019. https ://doi.org/10.1061/(ASCE)CC.1943-5614.00009 10.
  • [16] Ge W, Zhang J, Cao D, Yongming T. Flexural behaviors of hybrid concrete beams reinforced with BFRP bars and steel bars. Contr Build Mater. 2015;87:28–37.
  • [17] Kara IF, Ashour AF, Köroğlu MA. Flexural behavior of hybrid FRP/steel reinforced concrete beams. Compos Struct. 2015;129:111–21.
  • [18] El Refai A, Abed F, Al-Rahmani A. Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars. Constr Build Mater. 2015;96:518–29.
  • [19] Yoo D-Y, Banthia N, Yoon Y-S. Flexural behavior of ultra-highperformance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Eng Struct. 2016;111:246–62.
  • [20] Sun Z, Fu L, Feng DC, Vatuloka AR, Wei Y, Wu G. Experimental study on the flexural behavior of concrete beams reinforced with bundled hybrid steel/FRP bars. Eng Struct. 2019;197:109443.
  • [21] Maranan G, Manalo A, Benmokrane B, Karunasena WM, Mendis P, Nguyen KTQ. Flexural behavior of geopolymer-concrete beams longitudinally reinforced with GFRP and steel hybrid reinforcements. Eng Struct. 2019;182:141–52.
  • [22] Gang W, Zhi-Shen W, Luo Y-B, Sun Z-Y, Xian-Qi H. Mechanical properties of steel-FRP composite bar under uniaxial and cyclic tensile loads. J Mater Civ Eng. 2010;22(10):1056–66.
  • [23] Sun ZY, Wu G, Zhang J, Zeng YH, Xiao W. Experimental study on concrete columns reinforced by hybrid steel-fiber reinforced polymer (FRP) bars under horizontal cyclic loading. Constr Build Mater. 2017;130:202–11.
  • [24] Sun ZY, Yang Y, Yan W, Wu G, He X. Moment curvature behaviors of concrete beams singly reinforced by steel-FRP composite bars. Adv Civ Eng. 2017. https ://doi.org/10.1155/2017/13096 29.
  • [25] China Academy of Building Research. GB/T50081-2016: standard for test method of mechanical properties on ordinary concrete. Beijing: China Building Industry Press; 2016.
  • [26] China Academy of Building Research. Code for design of concrete structures GB50010-2010. Beijing: China Building Industry Press; 2010.
  • [27] American Concrete Institute. Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures ACI 440.3R-04. Farmington Hills: American Concrete Institute; 2004.
  • [28] China Academy of Building Research. Standard for test metod of concrete structures GB 50152-2012. Beijing: China Building Industry Press; 2012.
  • [29] Wang CZ, Teng ZM. Theory of Concrete Structure. Beijing: China Building Industry Press; 1983. p. 278.
  • [30] American Concrete Institute. ACI 440.1R-06: Guide for the design and construction of structural concrete reinforced with FRP bars. Farmington Hills: American Concrete Institute; 2006.
  • [31] American Concrete Institute. ACI 224R-01: Control of cracking in concrete structures. Farmington Hills: American Concrete Institute; 2001.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a383371-af84-43dc-ae1f-1226474a8c34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.