Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A significant generalization of convexity is constituted by the concept of E-convexity, and our aim in this paper is to define a new class of functions depending on E-convexity, called logarithmic E-convex functions and to discuss their properties. Logarithmic E -convex functions are extended to lo-garithmic quasi E-convex and logarithmic pseudo E-convex functions and some results concerning them are presented. Logarithmic E-convex multiobjective programming problem is formulated. Finally, the sufficient and necessary conditions for a feasible solution to be an efficient solution for multi-objective programming problem involving logarithmic E-convex functions are derived.
Czasopismo
Rocznik
Tom
Strony
335--354
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science, Suez University, Suez, Egypt
Bibliografia
- Abdulaleem, N. (2024) Exponentially E-Convex vector optimization problems. Journal of Industrial and Mangement Optimization, 20 (6), 2244–2259.
- Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (2006) Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, Inc., 3rd edition, ISBN: 978-0471486008.
- Emam, T. (2012) Norm–based approximation in E-Convex multi-objective programming. Ars Combinatoria, 103, 161–173.
- Emam, T. (2017) Optimality for E-[0,1] convex multi-objective programming. Filomat 31 (3) 529–541.
- Emam, T. (2020) Optimality and duality for nonsmooth semi-infinite E-convex multi-objective programming with support functions. Int. J. Simul. Multidisci. Des. Optim., 11 (17).
- Emam, T. (2023) Nonsmooth semi-infinite roughly B-invex multi-objective programming problems. Results in Control and Optimization. (11), June 2023, 100224.
- Jeyakumar, V. and Yang, X.Q. (1993) Convex composite multi-objective non-smooth programming. Journal of Mathematical Programming, 59, 325–343.
- Mishra, Sh. K. Wang, S.–Y. and Lai, K. K. (2009) Generalized Convexity and Vector Optimization. Nonconvex Optimization and Its Applications, 90, Springer-Verlag, Berlin.
- Noor, M. A. and Noor, K. I. (2019a) Strongly exponentially convex functions. U.P.B. Bull Sci. Appl. Math. Series A, 81(4), 75–84.
- Noor, M. A. and Noor, K. I. (2019b) On generalized strongly convex functions involving bifunction. Appl. Math. Inform. Sci. 13(3), 411–416.
- Youness, E.A. (1999) E-convex sets, E-convex functions, and E-convex programming. Journal of Optimization Theory and Applications, 102 (3), 439–450.
- Youness, E.A. (2004) Characterization of efficient solutions of multi-objective E-convex programming problems. Applied Mathematics and Computation, 151, 755–761.
- Youness, E.A. and Emam, T. (2005) Strongly E-convex sets and strongly E-convex functions. Journal of Interdisciplinary Mathematics, 8 (1), 107–117.
- Youness, E.A. and Emam, T. (2008) Characterization of Efficient Solutions of Multi-objective Optimization Problems involving Semi-Strongly and Generalized Semi-Strongly E-convexity. Acta Mathematica Scientia, 28B(1), 7–16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a370893-9d76-4168-93b6-2201c9b7f95c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.