PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Near-field multiple optical trapping using high order axially symmetric polarized beams

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The near-field multiple optical trapping using high order axially symmetric polarized beams (ASPBs) is studied for the first time. First, a near-field optical trapping scheme is proposed based on the Kretschmann–Raether configuration, and surface plasmon polaritons (SPPs) field distributions excited by incident ASPBs are calculated, which present a multi-focal-spot pattern and the size of spots is much smaller than that of the diffraction limitation. Then, the gradient forces on Rayleigh dielectric particles formed by the multi-focal-spot focused field are computed, which indicates that multiple ultra-small particles with the refractive index higher than that of the ambient medium can be trapped simultaneously on the metal surface. The number and size of trapped particles can be manipulated by flexibly modifying the polarization order of incident beams, which is expected to enhance the capability of traditional optical trapping systems and provide a solution for massively parallel optical trapping of nanometer-sized particles.
Czasopismo
Rocznik
Strony
s. 287--296
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Beijing Engineering Research Center of Optoelectronic Information and Instruments, Beijing Information Science and Technology University, Beijing 100192, China
  • State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
autor
  • State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
autor
  • Beijing Engineering Research Center of Optoelectronic Information and Instruments, Beijing Information Science and Technology University, Beijing 100192, China
autor
  • State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
Bibliografia
  • [1] QIWEN ZHAN, Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams, Journal of Optics A: Pure and Applied Optics 5(3), 2003, pp. 229–232.
  • [2] QIWEN ZHAN, Trapping metallic Rayleigh particles with radial polarization, Optics Express 12(15), 2004, pp. 3377–3382.
  • [3] VOLPE G., SINGH G.P., PETROV D., Optical tweezers with cylindrical vector beams produced by optical fibers, Proceedings of SPIE 5514, 2004, pp. 283–292.
  • [4] KAWAUCHI H., YONEZAWA K., KOZAWA Y., SATO S., Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam, Optics Letters 32(13), 2007, pp. 1839–1841.
  • [5] YSHAOHUI YAN, BAOLI YAO, Radiation forces of a highly focused radially polarized beam on spherical particles, Physical Review A 76(5), 2007, article 053836.
  • [6] NIEMINEN T., HECKENBERG N., RUBINSZTEIN-DUNLOP H., Forces in optical tweezers with radially and azimuthally polarized trapping beams, Optics Letters 33(2), 2008, pp. 122–124.
  • [7] MICHIHATA M., HAYASHI T., TAKAYA Y., Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam, Applied Optics 48(32), 2009, pp. 6143–6151.
  • [8] KOZAWA Y., SATO S., Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams, Optics Express 18(10), 2010, pp. 10828–10833.
  • [9] ROXWORTHY B.J., TOUSSAINT K.C. JR, Optical trapping with π -phase cylindrical vector beams, New Journal of Physics 12(7), 2010, article 073012.
  • [10] YIQIONG ZHAO, QIWEN ZHAN, YANLI ZHANG, YONG-PING LI, Creation of a three-dimensional optical chain for controllable particle delivery, Optics Letters 30(8), 2005, pp. 848–850.
  • [11] XI-LIN WANG, JIANPING DING, JIAN-QI QIN, JING CHEN, YA-XIAN FAN, HUI-TIAN WANG, Configurable three-dimensional cage generated from cylindrical vector beams, Optics Communications 282(17), 2009, pp. 3421–3425.
  • [12] YAOJU ZHANG, BIAOFENG DING, SUYAMA T., Trapping two types of particles using double-ring-shaped radially polarized beam, Physical Review A 81(2), 2010, article 023831.
  • [13] YOUYI ZHUANG, YAOJU ZHANG, BIAOFENG DING, SUYAMA T., Trapping Rayleigh particles using highly focused high-order radially polarized beams, Optics Communications 284(7), 2011, pp. 1734–1739.
  • [14] ČIŽMÁR T., GARCÉS-CHÁVEZ V., DHOLAKIA K., ZEMÁNEK P., Optical conveyor belt for delivery of submicron objects, Applied Physics Letters 86(17), 2005, article 174101.
  • [15] ČIŽMÁR T., KOLLÁROVÁ V., BOUCHAL Z., ZEMÁNEK P., Sub-micron particle organization of self-imaging of non-diffracting beams, New Journal of Physics 8(3), 2006, article 43.
  • [16] STALDER M., SCHADT M., Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters, Optics Letters 21(23), 1996, pp. 1948–1950.
  • [17] BOMZON Z., KLEINER V., HASMAN E., Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings, Applied Physics Letters 79(11), 2001, pp. 1587–1589.
  • [18] BOMZON Z., BIENER G., KLEINER V., HASMAN E., Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings, Optics Letters 27(5), 2002, pp. 285–287.
  • [19] XI-LIN WANG, JIANPING DING, WEI-JIANG NI, CHENG-SHAN GUO, HUI-TIAN WANG, Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement, Optics Letters 32(24), 2007, pp. 3549–3551.
  • [20] ZHEHAI ZHOU, QIAOFENG TAN, GUOFAN JIN, Focusing of high polarization order axially-symmetric polarized beams, Chinese Optics Letters 7(10), 2009, pp. 938–940.
  • [21] RASHID M., MARAGO O.M., JONES P.H., Focusing of high order cylindrical vector beams, Journal of Optics A: Pure and Applied Optics 11(6), 2009, article 065204.
  • [22] KUN HUANG, PENG SHI, CAO G.W., KE LI, ZHANG X.B., LI Y.P., Vector-vortex Bessel–Gauss beams and their tightly focusing properties, Optics Letters 36(6), 2011, pp. 888–890.
  • [23] RIGHINI M., GIRARD C., QUIDANT R., Light-induced manipulation with surface plasmons, Journal of Optics A: Pure and Applied Optics 10(9), 2008, article 093001.
  • [24] JUAN M.L., RIGHINI M., QUIDANT R., Plasmon nano-optical tweezers, Nature Photonics 5(6), 2011, pp. 349–356.
  • [25] MIN GU, HAUMONTE J. B., MICHEAU Y., CHON J.W.M., XIAOSONG GAN, Laser trapping and manipulation under focused evanescent wave illumination, Applied Physics Letters 84(21), 2004, pp. 4236–4238.
  • [26] ZHEHAI ZHOU, QIAOFENG TAN, GUOFAN JIN, Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams, Chinese Optics Letters 8(12), 2010, pp. 1178–1181.
  • [27] RAETHER H., Surface Plasmons on Smooth and Rough Surfaces and Gratings, Springer-Verlag, Berlin, 1988, pp. 63–70.
  • [28] Born M., Wolf E., Principles of Optics, 6th Edition, Pergamon Press, Oxford, 1980, pp. 80–110.
  • [29] HARADA Y., ASAKURA T., Radiation force on a dielectric sphere in the Rayleigh scattering regime, Optics Communications 124(5–6), 1996, pp. 529–541.
  • [30] ASHKIN A., DZIEDZIC J. M., BJORKHOLM J. E., CHU S., Observation of a single-beam gradient force optical trap for dielectric particles, Optics Letters 11(5), 1986, pp. 288–290.
  • [31] PLOSCHNER M., MAZILU M., KRAUSS T. F., DHOLAKIA K., Optical forces near a nanoantenna, Journal of Nanophotonics 4(1), 2010, article 041570.
  • [32] RIGHINI M., GHENUCHE P., CHERUKULAPPURATH S., MYROSHNYCHENKO V., GARCÍA DE ABAJO F.J., QUIDANT R., Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas, Nano Letters 9(10), 2009, pp. 3387–3391.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a332c0a-898e-4834-b2a1-011d10377d5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.