PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FET input voltage amplifier for low frequency noise measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a low noise voltage FET amplifier for low frequency noise measurements. It was built using two stages of an op amp trans impedance amplifier. To reduce voltage noise, eight-paralleled low noise discrete JFETs were used in the first stage. The designed amplifier was then compared to commercial ones. Its measured value of voltage noise spectral density is around 24 nV/√Hz, 3 nV/√Hz, 0.95 nV/√Hz and 0.6 nV/√Hz at the frequency of 0.1, 1, 10 and 100 Hz, respectively. A -3dB frequency response is from ~20 mHz to ~600 kHz.
Rocznik
Strony
531--540
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., wzory
Twórcy
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Van Der Ziel, A. (1986). Noise in Solid State Devices and Circuits. New York: J. Wiley & Sons.
  • [2] Labat, N., Malbert, N., Maneux, C. Touboul, A. (2004). Low frequency noise as a reliability diagnostic tool in compound semiconductor transistors. Microelectronics Reliability, 44(9-11), 1361-1368.
  • [3] Deen, M.J. Pascal, F. (2006). Electrical characterization of semiconductor materials and devices - Review. Journal of Materials Science: Materials in Electronics, 17(8), 549-575.
  • [4] Fleetwood, D.M. (2015). 1/f noise and defects in microelectronic materials and devices. IEEE Transactions on Nuclear Science, 62(4), 1462-1486.
  • [5] Sloma, M., Jakubowska, M., Kolek, A., Mleczko, K., Ptak, P., Stadler, A.W., Zawiślak, Z. Mlozniak, A. (2011). Investigations on printed elastic resistors containing carbon nanotubes. Journal of Materials Science: Materials in Electronics, 22(9), 1321-1329.
  • [6] Stadler, A.W., Kolek, A., Zawislak, Z., Dziedzic, A. (2015). Noise measurements of resistors with the use of dual-phase virtual lock-in technique. Metrology and Measurement Systems, 22(4), 503-512.
  • [7] Stadler, A.W., Kolek, A., Mleczko, K., Zawislak, Z., Dziedzic, A., Nowak, D. (2015). Noise properties of thick-film conducting lines for integrated inductors. Metrology and Measurement Systems, 22(2), 229-240.
  • [8] Stadler, A.W., Zawiślak, Z., Dziedzic, A., Nowak, D. (2014). Noise spectroscopy of resistive components at elevated temperature. Metrology and Measurement Systems, 21(1), 15-26.
  • [9] Kish, L.B. (2019). Zero-point thermal noise in resistors? A conclusion. Metrology and Measurement Systems, 26(1), 3-11.
  • [10] Scandurra, G., Beyne, S., Giusi, G., Ciofi, C. (2019). On the design of an automated system for the characterization of the electromigration performance of advanced interconnects by means of low-frequency noise measurements. Metrology and Measurement Systems, 26(1), 13-21.
  • [11] Smulko, J., Azens, A., Marsal, R., Kish, L.B., Green, S., Granqvist, C.G. (2008). Application of 1/f current noise for quality and age monitoring of electrochromic devices. Solar Energy Materials & Solar Cells, 92(8), 914-918.
  • [12] Ciura, Ł., Kolek, A., Gawron, W., Kowalewski, A., Stanaszek, D. (2014). Measurements of low frequency noise of infrared photodetectors with transimpedance detection system. Metrology and Measurement Systems, 21(3), 461-472.
  • [13] Ciura, L., Kolek, A., Jurenczyk, J., Czuba, K., Jasik, A., Sankowska, I., Papis-Polakowska, E., Kaniewski, J. (2016). Noise-current correlations in InAs/GaSb Type-II superlattice mid-wavelength infrared detectors. IEEE Transactions on Electron Devices, 63(12), 4907-4912.
  • [14] Kolek, A., Ciura, L., Jasik, A., Kaniewski, J. B., Sankowska, I., Czuba, K., Jurenczyk, J. (2017). Noise and detectivity of InAs/GaSb T2SL 4.5 um IR detectors. Proc. of the Infrared Sensors, Devices, and Applications VII, 1040402.
  • [15] Ciura, L., Kolek, A., Gomółka, E., Murawski, K., Kopytko, M., Martyniuk, P., Rogalski, A. (2019). Trap parameters in the infrared InAsSb absorber found by capacitance and noise measurements. Semiconductor Science and Technology, 34(10).
  • [16] Ciura, L., Kolek, A., Kebłowski, A., Stanaszek, D., Piotrowski, A., Gawron, W., Piotrowski, J. (2016). Investigation of trap levels in HgCdTe IR detectors through low frequency noise spectroscopy. Semiconductor Science and Technology, 31(3), 1-7.
  • [17] Wróbel, J., Ciura, L., Motyka, M., Szmulowicz, F., Kolek, A., Kowalewski, A., Moszczyński, P., Dyksik, M., Madejczyk, P., Krishna, S., Rogalski, A. (2015). Investigation of a near mid-gap trap energy level in mid-wavelength infrared InAs/GaSb type-II superlattices. Semiconductor Science and Technology, 30(11).
  • [18] Howard, R.M. (1998). Low noise amplifier design and low noise amplifiers for characterizing the low frequency noise of infrared detectors. Proc. of the Optoelectronic and Microelectronic Materials and Devices, Perth, Australia, 179-182.
  • [19] Stadler, A.W., Kolek, A., Mleczko, K., Zawiślak, Z. (2015). Noise sources in polymer thick-film resistors Noise sources in polymer thick-film resistors. Soldering & Surface Mount Technology, 27(3), 115-119.
  • [20] Hasse, L.Z., Babicz, S., Kaczmarek, L., Smulko, J.M., Sedlakova V. (2014). Quality assessment of ZnO-based varistors by 1/f noise. Microelectronics Reliability, 54(1), 192-199.
  • [21] Kotarski, M., Smulko, J. (2009). Noise measurement setups for fluctuations enhanced gas sensing, Metrology and Measurement Systems, 16(3), 457-464.
  • [22] Stacewicz, T., Wojtas, J., Bielecki, Z., Nowakowski, M., Mikolajczyk, J., Mędrzycki, R., Rutecka, B. (2012). Cavity ring down spectroscopy: detection of trace amounts of substance. Opto-Electronics Review, 20(1), 53-60.
  • [23] Wojtas, J., Stacewicz, T., Bielecki, Z., Rutecka, B., Mędrzycki, R., Mikolajczyk, J. (2013). Towards optoelectronic detection of explosives. Opto-Electronics Review, 21(2), 210-219.
  • [24] Pace, C., Ciofi, C. Crupi, F. (2003). Very low-noise, high-accuracy programmable voltage reference. IEEE Transactions on Instrumentation and Measurement, 52(4), 1251-1254.
  • [25] Scandurra, G., Giusi, G., Ciofi, C. (2014). A very low noise, high accuracy, programmable voltage source for low frequency noise measurements. Review of Scientific Instruments, 85(4), 044702.
  • [26] Scandurra, G., Cannatà, G., Giusi, G. Ciofi, C. (2014). Programmable, very low noise current source. Review of Scientific Instruments, 85(12), 125109.
  • [27] Ciofi, C., Giusi, G., Scandurra, G., Neri, B. (2004). Dedicated instrumentation for high sensitivity, low frequency noise measurement systems. Fluctuation and Noise Letters, 4(2), 385-402.
  • [28] Rogalski, A., Bielecki, Z., Mikołajczyk, J. (2017). Detection of optical radiation. In Dakin, J.P., Brown, R.G.W., Handbook of Optoelectronics, Concepts, Devices, and Techniques. CRC Press, 65-124.
  • [29] Horowitz, P., Hill, W. (2015). The Art of Electronics (3rd. ed.). Cambridge University Press, 721-735.
  • [30] Neri, B., Pellegrini, B., Saletti, R. (1991). Ultra-low-noise preamplifier for low-frequency noise measurements in electron devices. IEEE Transactions on Instrumentation and Measurement, 40(1), 2-6.
  • [31] Cannatà, G., Scandurra, G., Ciofi, C. (2009). An ultralow noise preamplifier for low frequency noise measurements. Review of Scientific Instruments, 80(11), 114702.
  • [32] Scandurra, G., Cannatà, G. Ciofi, C. (2011). Differential ultra-low noise amplifier for low frequency noise measurements. AIP Advances, 1(2), 022144.
  • [33] Levinzon, F.A. (2008). Ultra-low-noise high-input impedance amplifier for low-frequency measurement applications. Transactions on Circuits and Systems I: Regular Papers, 55(7), 1815-1822.
  • [34] Scandurra, G., Giusi, G., Ciofi, C. (2019). Single JFET front-end amplifier for low frequency noise measurements with cross correlation-based gain calibration. Electronics, 8(10). 1197.
  • [35] Borbely, E. (1999). JFETS: The New Frontier, Part 1. Audio Electronics, 5, 26-31.
  • [36] Levinzon, F.A. (2005). Measurement of low-frequency noise of modern low-noise junction field effect transistors. IEEE Transactions on Instrumentation and Measurement, 54(6), 2427-2432.
Uwagi
EN
1. This work was prepared within the frame of grant UGB/22-786/2020/WAT.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a3216a0-5045-41fc-8607-26e51f46ce58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.