PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synthetic extracellular matrix as a substrate for regenerative medicine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents materials characteristics of fibrous polysaccharide substrates (calcium alginate, CA) modified with short peptides. Three types of synthesized peptides (hexapeptides) were composed of: cysteine (C) and tryptophan (W) named - (WWC)2or cysteine (C) and tyrosine (Y) named (YYC)2 or phenyloalanine (F) named 6F. The peptides size distribution (DLS method) showed that they agglomerated in an alcohol medium. These results were used to select a modification method of the fibrous substrates i.e. the peptides were deposited on the fibrous alginate substrate by the electrospraying technique. Using this method three kinds of polysaccharide- peptides systems were obtained i.e.: CA/(WWC)2, CA/(YYC)2CA/6F. As a reference material, the pure calcium alginate fibrous substrate was used. The results of modification with short peptides were evaluated via scanning electron microscopy (SEM): small aggregates were observed (40-100 nm) on the surface of fibers, and the fibers size remained the same after modification (11-12 μm). The size of aggregates depended on the kind of short peptide; the smaller (40 nm) aggregates were observed when the peptide had only aromatic chain (6F), the bigger (<100 nm) ones were observed when the peptide had heterocyclic rings in the chain (WWC and YYC). All materials were contacted with osteoblast-like cells (MG-63) to test biocompatibility (cells viability after 3 and 7 days) and the results proved showed higher viability in the polysaccharide-peptide system which increased with the time of observation. The durability of polysaccharide-peptide systems was tested using the enzymatic assay: collagenase confirmed the stability of materials. The progress of degradation rate was observed using infrared spectroscopy (FTIR-ATR) - the ratio on bands with C-O and C-OH increased after degradation under in vitro conditions.Results of the investigations on the fibrous substrates have confirmed that the system is a good model of an extracellular matrix (ECM) due to its chemical composition and microstructure which both have biomimetic characteristics. Thus, it may be used as a filling of bone defects supporting the regeneration of the damaged tissue. Additionally, it may also serve as the model research system of ECM.
Rocznik
Strony
10--15
Opis fizyczny
Bibliogr. 16 poz., rys., zdj.
Twórcy
  • Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Cytobiology, Collegium Medicum, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland
  • Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Physiotherapy, Academy of Physical Education, al. Jana Pawła II 28, 31-571 Kraków, Poland
  • The ŁUKASIEWICZ Research Network - Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland
  • Institute of Organic Chemistry, Lodz University of Technology, ul. S. Żeromskiego 116, 90-924 Łódź, Poland
Bibliografia
  • [1] Hinderer S., Layland S.L., Schenke-Layland K.: ECM and ECM-like materials – biomaterials for applications in regenerative medicine and cancer therapy. Adv. Drug Delivery Rev. 97 (2016) 260-269.
  • [2] Bačáková L., Novotná K., Pařízek M.: Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiol. Res. 63 (2014) 29-47.
  • [3] Jabłońska-Trypuć A., Matejczyk M., Rosochacki S.: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collage degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem. 31(S1) (2016) 177-183.
  • [4] Yue B.: Biology of the Extracellular Matrix: An Overview. J. Glaucoma 23 (2014) 20-23.
  • [5] Kuttappan S., Mathew D., Nair M.B.: Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering – A mini review. Int. J. Biol. Macromol. 93 (2016) 1390-1401.
  • [6] Wu J., Xie L., Zhi W., Lin Y., Chen Q.: Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development. Drug Discovery Today 22(9) (2017) 1375-1384.
  • [7] Protocol: Enzymatic Assay of Collagenase (EC 3.4.24.3) using FALGPA (N-(3-[2-Furyl]acryloyl)-Leu-Gly-Pro-Ala) as the Substrate. Sigma-Aldrich, 2017.
  • [8] Chaberska A., Fraczyk J., Wasko J., Rosiak P., Kaminski Z.J., So-lecka A., Stodolak-Zych E., Strzempek W., Menaszek E., Dudek M., Niemiec W., Kolesinska B.: Study on the materials formed by self--assembling hydrophobic aromatic peptides dedicated to be used for regenerative medicine. Chem Biodivers. 16(3) (2019) e1800543.
  • [9] Stodolak E., Paluszkiewicz C., Boguń M., Błażewicz M.: Nanocomposite fibres for medical applications. J. Mol. Struct. 208 (2009) 924-926.
  • [10] Anjana R., Vaishnavi M.K., Sherlin D., Kumar S.P., Naveen K., Kanth P.S., Sekar K.: Aromatic-aromatic interactions in structures of proteins and protein-DNA complexes: a study based on orientation and distance. Bioinformation 8(24) (2012) 1220-1224.
  • [11] Kannan N., Vishveshwara S.: Aromatic clusters: a determinant of thermal stability of thermophilic proteins. Protein Eng. 13 (2000) 753-761.
  • [12] Frączyk J., Lipiński W., Chaberska A., Wasko J., Rożniakowski K., Kaminski Z.J., Boguń M., Draczynski Z., Menaszek E., Stodolak--Zych E., Kaminska M., Kolesinska B.: Search for fibrous aggregates potentially useful in regenerative medicine formed under physiological conditions by self-assembling short peptides containing two identical aromatic amino acid residues. Molecules 23 (2018) 568, 1-19.
  • [13] Pace C.N., Treviño S., Prabhakaran E., Scholtz J.M.: Protein structure, stability and solubility in water and other solvents. Philosophical Transactions of the Royal Society B. Biological Science. 359 (2004) 1225-1235.
  • [14] Salazar A., Keusgen M., von Hagen J.: Amino acids in the cultivation of mammalian cells. Journal of Amino Acids 48(5) (2016) 1161-1171.
  • [15] Landauer K.: Designing media for animal cell culture: CHO cells, the industrial standard. Methods Mol. Biol. 1104 (2014) 89-103.
  • [16] Carrillo-Cocom L.M., Genel-Rey T., Araiz-Hernandez D., Lopez-Pacheco F., Lopez-Meza J., Rocha-Pizana M.R., Ramirez--Medrano A., Alvarez M.M.: Amino acid consumption in naive and recombinant CHO cell cultures: producers of a monoclonal antibody. Cytotechnology. 67(5) (2014) 809-820
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a24f2bd-09cb-4746-ac56-d3260258efa2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.