PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overview of the existing heat storage technologies: sensible heat

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the past several decades, much attention has been given to the development of technologies utilizing solar energy to generate inexpensive and clean heat for heating purposes of buildings and even for electricity generation in the concentrating solar thermal power (CSTP) plants. However, unlike conventional heat generating technologies consuming coal, natural gas, and oil, heat produced by solar energy is intermittent because it is significantly affected by daily (day-night) and seasonal fluctuations in solar insolation. This fact issues a considerable challenge to the adoption of solar energy as one of the main renewable heat sources in the future. Therefore, along with the development of the different solar technologies, the heat storage technologies have also been the focus of attention. Use of the storage devices, able to accumulate heat, enables not only enhance the performance of the heating systems based on solar energy but also make them more reliable. This paper gives an overview of the various sensible heat storage technologies used in tandem with the fluctuating solar heat sources.
Twórcy
autor
  • Cherkasy State Technological University, Faculty of Mechanical Engineering, Department of Energy Technology, 460 Shevchenko Boulevard, 18006 Cherkasy, Ukraine
autor
  • University of Rostock, R&D in Renewable Energy, Erich-Schlesinger Str. 20, 18059 Rostock, Germany
autor
  • Cherkasy State Technological University, Faculty of Mechanical Engineering, Department of Energy Technology, 460 Shevchenko Boulevard, 18006 Cherkasy, Ukraine
Bibliografia
  • [1] I. Dinçer, M.A. Rosen, Thermal Energy Storage: Systems and Applications, John Wiley & Sons, 2010.
  • [2] H.O. Paksoy, Thermal Energy Storage for Sustainable Energy Consumption Fundamentals, Case Studies and Design, Dordrecht, Springer, 2007.
  • [3] G. Beckmann, P. Gilli, Thermal Energy Storage: Basics, Design, Applications to Power Generation and Heat Supply, Springer-Verlag, Wien/New York, 1984.
  • [4] R. Huggins, Energy Storage: Fundamentals, Materials and Applications, 2nd edition, Springer, 2015.
  • [5] D. Rutz, R. Mergner, R. Janssen, Sustainable Heat Use of Biogas Plants: a Handbook, 2nd edition, WIP Renewable Energies, Munich, Germany, 2015.
  • [6] S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energy. Combust. Sci. 39 (2013) 285–319.
  • [7] C. Bales, Final Report of Subtask B -Chemical and Sorption Storage, IEA Solar Heating and Cooling, Task 32, 2008.
  • [8] J.C. Hardorn, Thermal Energy Storage for Solar and Low Energy Buildings -IEA Solar Heating and Cooling, Task 32, 2005.
  • [9] S. Henninger, (2008). Heat Storage Technologies: Markets, Actors, Potentials. Policy Reinforcement Regarding Heat Storage Technologies, 2008.
  • [10] N.B. Vargaftik, Y.K. Vinogradov, V.S. Yargin, Handbook of Physical Properties of Liquids and Gases. Pure Substances and Mixtures, 3d edition, Begell House, New York, USA, 1996.
  • [11] M.K. Bezrodny, I.L. Pioro, T.O. Kostyuk, Transfer Processes in Two-Phase Thermosyphon Systems. Theory and Practice, Fact, Kiev, 2005.
  • [12] Tables of Physical Constants. Edited by acad. I.K. Kikoin, Atomizdat, Moscow, 1976.
  • [13] E.C. Robertson, Thermal Properties of Rock, United States Department of Interior Geological Survey, Virginia, 1988.
  • [14] O. Ercan Ataer, Storage of Thermal Energy, in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, 2006.
  • [15] R. Tiskatinea, R. Oaddi, R. Ait El Cadi, A. Bazgaoua, L. Bouirdena, A. Aharounea, A. Ihlal. Suitability and characteristics of rocks for sensible heat storage in CSP plants, Solar Energy Materials and Solar Cells, 169 (2017) 245–257.
  • [16] R.W. Shchekin et al. Handbook on Heat Supply and Ventilation. Book 1: Heating and Heat Supply, 4th edition, Budivelnik, Kiev, 1976.
  • [17] M. Spanggaard, T. Schwaner, Basics of Thermal Stratification in Solar Thermal Systems (Report), EyeCular Technologies, Copenhagen, Denmark, 2015.
  • [18] D.J. Close, A design approach for solar processes, Solar Energy, 11 (1967) 112-122.
  • [19] Z. Lavan, J. Thomsen, J. (1977). Experimental study of thermally stratified hot water storage tanks. Solar Energy, 19 (1977) 519-524.
  • [20] R.I. Loehrke, J.C. Holzer, H.N. Gari, M.K. Sharp, Stratification enhancement in liquid thermal storage tank. Journal of Energy, 3 (1979) 129-130.
  • [21] M.K. Sharp, R.I. Loehrke, Stratified thermal storage in residential solar energy applications. Journal of Energy, 3 (1979) 106-113.
  • [22] C.W.J. Van Koppen, J.P. Simon Thomas, W.B. Veltkamp, (1979). The Actual Benefits of Thermally Stratified Storage in a Small and a Medium Size Solar System (Report), Electric Power Research Institute EA, 1979, pp. 576-580.
  • [23] Gang Li, Xuefei Zheng, Thermal energy storage system integration forms for a sustainable future, Renewable and Sustainable Energy Reviews, 62 (2016) 736–757.
  • [24] R. Panneer Selvam, Micah Hale, Matt Strasser, Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation. Technical Report DOE-UARK—18147, Univ. of Arkansas, Fayetteville, AR, US.
  • [25] Doerte Laing, Dorothea Lehmann, Carsten Bahl, Concrete storage for solar thermal power plants and industrial process heat, 3rd International Renewable Energy Storage Conference, 24-25 of November 2008, Berlin, Germany.
  • [26] Doerte Laing, Wolf-Dieter Steinmann, Rainer Tamme, Christoph Richter. Solid media thermal storage for parabolic trough power plants. Solar Energy 80 (2006) 1283–1289.
  • [27] https://www.nrel.gov/csp/solarpaces/by_project.cfm [28.04.2018].
  • [28] 316/316L Stainless Steel. Product Data Sheet. AK Steel Holding. http://www.aksteel.com/pdf/markets_products/stainless/austenitic/316_316l_data_sheet.pdf [28.04.2018].
  • [29] J. Skinner, Testing of Ultra-High Performance Concrete as a Thermal Energy Storage Medium at High Temperatures. Master's Thesis. Fayetteville, University of Arkansas, 2011.
  • [30] J. Skinner, B. Brown, R.P. Selvam, Testing of high performance concrete as a thermal energy storage medium at high temperatures. 5th International Conference on Energy Sustainability, Washington DC, ASME, 2011.
  • [31] J. Lata, J. Blanco, Single tank thermal storage design for solar thermal power plants. Solar Paces 2010.
  • [32] W. Gaggioli, F. Fabrizi, P. Tarquini, L. Rinaldi, Experimental validation of the innovative thermal energy storage based on an integrated system ‘storage tank/steam generator’, Energy Procedia, 69 (2015) 822–831.
  • [33] C. Libby, Solar Thermocline Storage Systems. Preliminary Design Study. Palo Alto, CA, 2010.
  • [34] J.E. Pacheco, S.K. Showalter, W.J. Kolb, Development of a molten-salt thermocline thermal storage system for parabolic trough plants, J. Sol. Energy Eng., 124 (2002) 153-159.
  • [35] N. Breidenbach, C. Martin, H. Jockenhöfer, T. Bauer, Thermal energy storage in molten salts: overview of novel concepts and the DLR test facility TESIS, Energy Procedia, 99 (2016) 120-129.
  • [36] G.J. Kolb, Evaluation of annual performance of 2-tank and thermocline thermal storage systems for trough plants, Journal of Solar Energy Engineering, 133 (2011) 031023-5.
  • [37] S.S. Laurent, Thermocline Thermal Storage Test for Large-Scale Solar Thermal Power Plants. Sandia National Laboratory, SAND2000-2059C, 2000.
  • [38] D. Brousseau, P. Hlava, M. Kelly, Testing Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems Used in Parabolic Trough Solar Power Plants. Sandia National Laboratory, SAND2004-3207, 2004.
  • [39] J.T. Van Lew, P. Li, C.L. Chan, W. Karaki, J. Stephens, Analysis of heat storage and delivery of a thermocline tank having solid filler material. Journal of Solar Energy Engineering, Transactions of the ASME, 133 (2011) 021003-10.
  • [40] S. Flueckiger, Z. Yang, S.V. Garimella, An integrated thermal and mechanical investigation of molten-salt thermocline energy storage, Applied Energy, 88 (2011) 2098-105.
  • [41] G. Heath, C. Turchi, T. Decker, J. Burkhardt, C. Kutscher, Life cycle assessment of thermal energy storage: two-tank indirect and thermocline. ASME Conference Proceedings 2009, 2009 (48906): 689-90.
  • [42] H. Singh, R.P. Saini, J.S. Saini, A review on packed bed solar energy storage systems, Renew. Sustain. Energy Rev., 14 (2010) 1059–1069.
  • [43] K. Allen, Performance Characteristics of Packed Bed Thermal Energy Storage for Solar Thermal Power Plants. Master’s Thesis. University of Stellenbosch, 2010.
  • [44] G. Zanganeh, A. Pedretti, A. Haselbacher, A. Steinfeld, Design of packed bed thermal energy storage systems for high-temperature industrial process heat, Appl. Energy, 137 (2015) 812–822.
  • [45] N.G. Barton, Simulations of air-blown thermal storage in a rock bed, Appl. Therm. Eng., 55 (2013) 43–50.
  • [46] J. Liu, L. Wang, L. Yang, L. Yue, L. Chai, Y. Sheng, H. Chen, C. Tan, Experimental study on heat storage and transfer characteristics of supercritical air in a rock bed, Int. J. Heat. Mass Trans., 77 (2014) 883–890.
  • [47] L. Heller, P. Gauché, Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa, Sol. Energy, 93 (2013) 345–356.
  • [48] A. Meier, C. Winkler, D. Wuillemin, Experiment for modelling high temperature rock bed storage, Sol. Energy Mat., 24 (1991) 255–264.
  • [49] G. Zanganeh, A. Pedretti, S. Zavattoni, M. Barbato, A. Steinfeld, Packed-bed thermal storage for concentrated solar power -Pilot-scale demonstration and industrial-scale design, Sol. Energy, 86 (2012) 3084–3098.
  • [50] M. Hänchen, S. Brückner, A. Steinfeld, High temperature thermal storage using a packed bed of rocks-Heat transfer analysis and experimental validation, Appl. Therm. Eng., 31 (2011) 1798–1806.
  • [51] J.P. Coutier, E.A. Farber, Two application of a numerical approach of heat transfer process within rock beds, Sol. Energy, 29 (1982) 451–462.
  • [52] E. González-Roubaud, D. Pérez-Osorio, C. Prieto. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renewable and Sustainable Energy Reviews, 80 (2017) 133-148.
  • [53] https://www.energystorageexchange.org/projects/619 [28.04.2018].
  • [54] https://www.nrel.gov/docs/legosti/fy97/22835.pdf [28.04.2018].
  • [55] K. Lovegrove. Concentrating Solar Power -Global Status. Renewable Energy Symposium, UNSW, 15 April 2014.
  • [56] DOWTHERM A Heat Transfer Fluid: Product Technical Data. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0030/0901b803800303cd.pdf [28.04.2018].
  • [57] D. Mangold, T. Schmidt, V. Lottner. Seasonal thermal energy storage in Germany. Futurestock 2003: Proceedings of 9th International Conference on Thermal Energy Storage: Warsaw, Poland, September 1-4, 2003.
  • [58] J.E. Nielsen, P.A. Sorensen, Renewable district heating and cooling technologies with and without seasonal storage. Renewable Heating and Cooling: Technologies and Applications. 197–220, 2016.
  • [59] S.A. Bespalko, S.P. Polyakov, T.I. Naumenko, Review of Existing Methods, Technologies and Materials for Heat Storage, in O.U. Berezina, U.V. Tkachenko (ed.), Global Partnership in Paradigm of Sustainable Growth: Education, Technologies and Innovations, Cherkasy (Ukraine), pp. 451-463. (in Ukrainian).
  • [60] D. Mangold, T. Schmidt. The next generations of seasonal thermal energy storage in Germany. 3rd European Solar Thermal Energy Conference (ESTEC 2007): Proceedings, June 19-20, 2007, Freiburg, Germany.
  • [61] http://www.stz-egs.de/langzeitwarmespeicher-friedrichshafen/ [28.04.2018].
  • [62] T. Schmidt, D. Mangold, H. Muller-Steinhagen, Seasonal thermal energy storage in Germany, ISES Solar World Congress, Goteborg, Schweden, 2003.
  • [63] V. Lottner, D. Mangold, Status of seasonal thermal energy storage in Germany. TERRASTOCK 2000: Proceedings of the 8th International Conference on Thermal Energy Storage pp. 1-8, August 28-September 1, 2000, Stuttgart, Germany.
  • [64] A. Lichtenfels, K.H. Reineck, The design and construction of the concrete hot water tank in Friedrichshafen for the seasonal storage of solar energy, Terrastock 2000: 8th International Conference on Thermal Energy Storage, August 28-September 1, 2000.
  • [65] Farzin M. Rad, Alan S. Fung, Solar community heating and cooling system with borehole thermal energy storage -Review of systems. Renewable and Sustainable Energy Reviews. 60 (2016) 1550–1561.
  • [66] https://bruteforcecollaborative.wordpress.com/2010/03/16/seasonal-thermal-storage/ [28.04.2018].
  • [67] D. Mangold, L. Deschainte, Seasonal thermal energy storage. Report on state of the art and necessary further R&D. Solites, Stuttgart, Germany. www.solites.de [28.04.2018].
  • [68] A.V. Novo, J.R. Bayon, D. Castro-Fresno, J. Rodriguez-Hernandez, Review of seasonal heat storage in large basins: water tanks and gravel–water pits. Appl. Energy, 87 (2010) 390–7.
  • [69] J. Xu, R.Z. Wang, Y. Li, A review of available technologies for seasonal thermal energy storage. Solar Energy, 103 (2014) 610–38.
  • [70] K. Nielsen, Thermal energy storage: a state-of-art, a report within the research program Smart Energy-Efficient Buildings at NTNU and SINTEF 2002–2006, 2003.
  • [71] G. Pavlov, B. Olesen, Seasonal solar thermal energy storage through ground heat exchanger- Review of systems and applications, Proceedings of the 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems, Croatia, Dubrovnik, 2011.
  • [72] L.G. Socaciu, Seasonal sensible thermal energy storage solutions, Leonardo Electronic Journal of Practices and Technologies, 19 (2011) 49-68.
  • [73] M. Reuss, M. Beck, J.P. Muller, Design of a seasonal thermal energy storage in the ground, Solar Energy, 59 (1997) 247–57.
  • [74] Liuhua Gao, Jun Zhao, Zipeng Tang, A review on borehole seasonal solar thermal energy storage. International Conference on Solar Heating and Cooling for Buildings and Industry, SHC 2014. Energy Procedia, 70 (2015) 209 -218.
  • [75] High Temperature Underground Thermal Energy Storage -State of the Art and Prospects, a review within ECES Annex 12 of the International Energy Agency IEA. In: Sanner B, editor. Giessener Geologische Schriften Nr. 67. Giessen: Lenz-Verlag, 1999.
  • [76] D.W. Bridger, D.M. Allen, Designing aquifer thermal energy storage systems, ASHRAE, 47 (2005) S32-S37.
  • [77] P.A. Domenico, F.W. Schwarz, Physical and Chemical Hydrogeology, 2nd edition, N.Y., John Wiley & Sons, 1998.
  • [78] T. Schmidt, H. Müller-Steinhagen, The central solar heating plant with aquifer thermal energy store in Rostock - Results after four years of operation. EuroSun 2004 -The 5th ISES Europe Solar Conference, 20-23 June 2004, Freiburg, Germany.
  • [79] D.W. Bridger, D.M. Allen, Designing aquifer thermal energy storage systems, ASHRAE, 47 (2005) S32-S37.
  • [80] H. Ghaebi, M.N. Bahadori, M.H. Saidi, Performance analysis and parametric study of thermal energy storage in an aquifer coupled with a heat pump and solar collectors for a residential complex in Tehran (Iran), Appl. Therm. Eng., 62 (2014) 156–70.
  • [81] M. Bakr, Niels van Oostroma, W. Sommer, Efficiency of and interference among multiple aquifer thermal energy storage systems: a Dutch case study, Renewable Energy, 60 (2013) 53-62.
  • [82] H. Kerskes, Seasonal thermal storage: state of the art and future aspects. RHC Workshop on Thermal Energy Storage -February 10, 2011 -Brussels.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a238381-1887-4747-9d84-b69dd88ab925
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.