Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Temperature rise and thrust ripple in Permanent Magnet Synchronous Linear Motors are critical factors that impact their operational performance and stability. This study addresses the coupled effects of temperature variation and thrust ripple in Permanent Magnet Synchronous Linear Motors by proposing a cooperative optimization method aimed at enhancing stability and efficiency. A trapezoidal Halbach alternating electrode structure based Permanent Magnet Synchronous Linear Motors analytical model was developed. Combining the Multi-Population Genetic Algorithm with the Kriging surrogate model, a cooperative optimization framework was established to improve the precision and efficiency of temperature and thrust ripple optimization through iterative sample point addition and multi-objective strategies. Experimental results demonstrate that the proposed method reduces thrust fluctuation to 8.3%, which is lower than traditional methods. The utilization rate of the permanent magnet is higher than other methods, reaching 5.8 N/cm 3. The temperature rise is significantly reduced, achieving a maximum energy-saving rate of 25%, and the optimization efficiency improves by 43.5%. In addition, the reliability of the method is verified by COMSOL Multiphysics 6.0 finite element simulation combined with ANSYS Maxwell electromagnetic simulation. This research offers a novel approach to Permanent Magnet Synchronous Linear Motors optimization, providing technical insights for designing high-performance, energy-efficient motors.
Czasopismo
Rocznik
Tom
Strony
503--519
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., wz.
Twórcy
autor
- School of Automation and Electrical Engineer, Lanzhou Jiaotong University, NO. 88, Anning West Road, Gansu Province, China
autor
- School of Automation and Electrical Engineer, Lanzhou Jiaotong University, NO. 88, Anning West Road, Gansu Province, China
autor
- Beijing Hollysys CO, LTD, Beijing Province, China
autor
- School of Automation and Electrical Engineer, Lanzhou Jiaotong University, NO. 88, Anning West Road, Gansu Province, China
autor
- School of Automation and Electrical Engineer, Lanzhou Jiaotong University, NO. 88, Anning West Road, Gansu Province, China
Bibliografia
- [1] Wang L., Zhao J., Yang X., Zheng Z., Zhang X., Wang L., Robust deadbeat predictive current regulation for permanent magnet synchronous linear motor drivers with parallel parameter disturbance and load observer, IEEE Transactions on Power Electronics, vol. 37, no. 7, pp. 7834–7845 (2022), DOI: 10.1109/tpel.2022.3148389.
- [2] Cao M., Nie Z., Song L., Sun J., GABP-based multiparameter identification for permanent magnet synchronous linear motors, Journal of Power Electronics, vol. 24, no. 9, pp. 1428–1437 (2024), DOI: 10.1007/s43236-024-00806-4.
- [3] Wang C., Yan J., Heng P., Shan L., Zhou X., Enhanced LADRC for permanent magnet synchronous motor with compensation function observer, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 3, pp. 3424–3434 (2023), DOI: 10.1109/JESTPE.2023.3265686.
- [4] Zhang Z., Luo M., Duan J., Duan J.A., Kou B., Design and modeling of a novel permanent magnet width modulation secondary for permanent magnet linear synchronous motor, IEEE Transactions on Industrial Electronics, vol. 69, no. 3, pp. 2749–2758 (2021), DOI: 10.1109/tie.2021.3065625.
- [5] Wang L., Zhao J., Zheng Z., Robust speed tracking control of permanent magnet synchronous linear motor based on a discrete-time sliding mode load thrust observer [J], IEEE Transactions on Industry Applications, vol. 58, no. 4, pp. 4758–4767 (2022), DOI: 10.1109/tia.2022.3173594.
- [6] Wu Q., Wang L., Yang G., Tang E., Wang X., Ramming mechanism based on permanent magnet synchronous linear motor, IEEE Transactions on Transportation Electrification, vol. 10, no. 1, pp. 122–134 (2023), DOI: 10.1109/tte.2023.3257922.
- [7] Li Z., Wang J., An J., Zhang Q., Zhu Y., Liu H., Sun H., Control strategy of biaxial variable gain cross-coupled permanent magnet synchronous linear motor based on MPC-MRAS, IEEE Transactions on Industry Applications, vol. 58, no. 4, pp. 4733–4743 (2022), DOI: 10.1109/tia.2022.3170535.
- [8] Zhang Z., Luo M., Duan J., Kou B., Design and analysis of a novel frequency modulation secondary for high-speed permanent magnet linear synchronous motor, IEEE/ASME Transactions on Mechatronics, vol. 27, no. 2, pp. 790–799 (2021), DOI: 10.1109/tmech.2021.3071549.
- [9] Di J., Fletcher J.E., Li W., Simplified piecewise model of line-start permanent magnet linear synchronous motors, IEEE Transactions on Industry Applications, vol. 58, no. 5, pp. 6093–6104 (2022), DOI: 10.1109/tia.2022.3183558.
- [10] Yang X., Yang R., Tan S., Yu X., Fang L., MPGA-based-ECMS for energy optimization of a hybrid electric city bus with dual planetary gear, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 236, no. 8, pp. 1889–1909 (2022), DOI: 10.1177/09544070211041074.
- [11] Yun H., Bu Z., Yang Z., Wang L., Zhang B., Optimization of fuel injection timing and ignition timing of hydrogen fueled SI engine based on DOE-MPGA, International Journal of Hydrogen Energy, vol. 48, no. 25, pp. 9462–9473 (2023), DOI: 10.1016/j.ijhydene.2022.12.068.
- [12] Chen Y., Cui C., Wu Y., Nondestructive detection model of soluble solids content of an apple using visible/near-infrared spectroscopy combined with CARS and MPGA, Applied Optics, vol. 60, no. 27, pp. 8400–8407 (2021), DOI: 10.1364/ao.439291.
- [13] Wu Y.Z., Fan Y.R., Wu Z.G., Deng S., Zhang P., Chen S., Yin Z., A fast inversion method for array laterolog based on convolutional neural network and hybrid MPGA-LM algorithm, Chinese Journal of Geophysics, vol. 64, no. 9, pp. 3410–3425 (2021), DOI: 10.6038/cjg2021O0499.
- [14] Zhang S., Qiang J., Liu H., Wang X., Zhou J., Fan D., An adaptive dynamic kriging surrogate model for application to the optimal remediation of contaminated groundwater, Water Resources Management, vol. 36, no. 13, pp. 5011–5032 (2022), DOI: 10.1007/s11269-022-03289-9.
- [15] Zhang S., Qiang J., Liu H., Zhu X., Lv H., A construction strategy for conservative adaptive Kriging surrogate model with application in the optimal design of contaminated groundwater extraction treatment, Environmental Science and Pollution Research, vol. 29, no. 28, pp. 42792–42808 (2022), DOI: 10.1007/s11356-021-18216-5.
- [16] Huang M., Leung V.C.M., Liu A., Xiong N.N., TMA-DPSO: Towards efficient multi-task allocation with time constraints for next generation multiple access, IEEE Journal on Selected Areas in Communications, vol. 40, no. 5, pp. 1652–1666 (2022), DOI: 10.1109/jsac.2022.3143205.
- [17] Mahmood D.Y., Abd M.K., Jalal K.A., Wind Energy Output Prediction Model Based on DPSO-BP Neural Network, International Journal of Intelligent Engineering & Systems, vol. 14, no. 1, pp. 242–254 (2021), DOI: 10.22266/ijies2021.0630.21.
- [18] Kwon J.H., Kim J.K., Jeon E.S., Shape Optimization of PMLSM Stator for Reduce Thrust Ripple Components Using DOE, Journal of the Semiconductor & Display Technology, vol. 20, no. 4, pp. 38–43 (2021), DOI: 10.3390/app112211066.
- [19] Shiliang Y., Wang Y., Lu D., Pan X., Simulation and Optimization of Permanent Magnet Linear Machine Based on Deep Neural Network, Journal of System Simulation, vol. 36, no. 3, pp. 713–725 (2024), DOI: 10.16182/j.issn1004731x.joss.23-0211.
- [20] Liu C., Yao J., Jia Y., Vehicle height control based on active suspension with permanent magnet synchronous linear motor, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 238, no. 5, pp. 1191–1200 (2024), DOI: 10.1177/0954407022114149.
- [21] Ni Y., Qiu Z., Xiao B., Investigation of surface-inset Halbach machines with trapezoidal mixed grade magnets, International Journal of Applied Electromagnetics and Mechanics, vol. 72, no. 4, pp. 387–408 (2023), DOI: 10.3233/JAE-220192.
- [22] Zeng R., Zhao J., Yan S., Mao Y., Research on cogging force suppression for toroidal pmlsm based on disturbance observer, CES Transactions on Electrical Machines and Systems, vol. 7, no. 2, pp. 187–192 (2023), DOI: 10.30941/CESTEMS.2023.00017.
- [23] Li Z., Zhang Z.H., Wang J.S., Yan Z.B., Guo X.Q., Sun H.X., Nonsingular Fast Terminal Sliding Mode Control Strategy for PMLSM Based on Disturbance Compensation, Journal of Electrical Engineering & Technology, vol. 19, no. 3, pp. 1331–1342 (2024), DOI: 10.1007/s42835-023-01590-0.
- [24] Sohail A., Genetic algorithms in the fields of artificial intelligence and data sciences, Annals of Data Science, vol. 10, no. 4, pp. 1007–1018 (2023), DOI: 10.1007/s40745-021-00354-9.
- [25] Hamdia K.M., Zhuang X., Rabczuk T., An efficient optimization approach for designing machine learning models based on genetic algorithm, Neural Computing and Applications, vol. 33, no. 6, pp. 1923–1933 (2021), DOI: 10.1007/s00521-020-05035-x.
- [26] Nikbakht S., Anitescu C., Rabczuk T., Optimizing the neural network hyperparameters utilizing genetic algorithm, Journal of Zhejiang University-Science A, vol. 22, no. 6, pp. 407-426 (2021), DOI: 10.1631/jzus.a2000384.
- [27] Garud K.S., Jayaraj S., Lee M.Y., A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models, International Journal of Energy Research, vol. 45, no. 1, pp. 6–35 (2021), DOI: 10.1002/er.5608.
- [28] Velliangiri S., Karthikeyan P., Xavier V.M.A., Baswaraj D., Hybrid electro search with genetic algorithm for task scheduling in cloud computing, Ain Shams Engineering Journal, vol. 12, no. 1, pp. 631–639 (2021), DOI: 10.1016/j.asej.2020.07.003.
- [29] Palanisamy R., Govindaraj V., Siddhan S., Albert J.R., Experimental investigation and comparative harmonic optimization of AMLI incorporate modified genetic algorithm using for power quality improvement, Journal of Intelligent & Fuzzy Systems, vol. 43, no. 1, pp. 1163–1176 (2022), DOI: 10.3233/jifs-212668.
- [30] Dang X., Gong D., Yao X., Tian T., Liu H., Enhancement of mutation testing via fuzzy clustering and multi-population genetic algorithm, IEEE Transactions on Software Engineering, vol. 48, no. 6, pp. 2141–2156 (2021), DOI: 10.1109/TSE.2021.3052987.
- [31] Yu W., Yang G., Wang L., Lin D., Al-Zahrani A., Improved flux linkage observer for position estimation of permanent magnet synchronous linear motor, Mechanical Sciences, vol. 15, no. 1, pp. 99–109 (2024), DOI: 10.5194/ms-15-99-2024.
- [32] Li Z., Wu L., Li Y., Lu Q., Huang X., Peretti L., Shen Y., Hybrid analytical model of permanent magnet linear motor considering iron saturation and end effect, IEEE transactions on energy conversion, vol. 39, no. 3, pp. 2008–2017 (2024), DOI: 10.1109/TEC.2024.3354488.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a219f3c-24b3-4c14-b466-62961abb6542
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.