Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The performance of nano-ionic liquids as working fluids for solar thermal energy storage systems is analysed and compared to that of traditional water-based solar storage systems. Critical variables are evaluated via the experimental setup (e.g., heat capacity, collector instantaneous efficiency, and average tank temperature) to obtain the optimum nanoparticle concentration for maximum thermal performance. Results show a significant enhancement in the heat capacity of the ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF6] with the addition of copper oxide nanoparticles (CuO). The best thermal performance is achieved with a 0.60% concentration of nanoparticles that provides a heat capacity increment of 34%. In addition, the instantaneous efficiency of the solar collector increased with the addition of nanoparticles to a peak efficiency of 74.17% at the 0.60% concentration. Moreover, the liquid phase temperature range of [Bmim][PF6] with CuO nanoparticles is significantly more expansive than that of water. It remains a liquid up to 200 °C, compared to water at 100 °C. This broader temperature range makes it highly suitable for high-temperature applications without the water phase change limitations. However, it’s important to note that higher concentrations of nanoparticles can lead to aggregation and reduced thermal performance. In conclusion, our study underscores the potential of nano ionic liquids, with optimized nanoparticle concentrations, as a convincing alternative to conventional thermal storage media. They offer clear advantages in high-temperature applications and can significantly enhance the overall efficiency of solar collector systems.
Czasopismo
Rocznik
Tom
Strony
237--245
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Renewable Energy Technology Department, Applied Science Private University, P.O. Box 541350, Amman 11937, Jordan
autor
- Modern Systems for Environmental Technologies Co. Ltd Jeddah 23436 – 4001, KSA
autor
- Department of Alternative Energy Technology, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
autor
- Department of Alternative Energy Technology, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
autor
- Electrical Engineering Department, Palestine Polytechnic University, Hebron, Palestine
Bibliografia
- 1. Al-Amayreh, M., & Alahmer, A. (2024). Efficiency enhancement in direct thermal energy storage systems using dual phase change materials and nanoparticle additives. Case Studies in Thermal Engineering, 59, 104577. https://doi.org/10.1016/j.csite.2024.104577
- 2. Aravind, R., Brahma, G. S., Swain, T., & Sahu, A. K. (2021). Synthesis, characterization of imidazole‐based copper complex mixtures and study of their thermal behaviour. International Journal of Energy Research, 45(6), 9179–9192. https://doi.org/10.1002/er.6445.
- 3. Basri, M., Haddada, J., Tarakka, R., Syahid, M., Ramadhani, M. A. (2022). Experimental study of modified absorber plate integrated with aluminium foam of solar water heating system. Int. J. Renew. Energy Res., 12, 993–999. https://doi.org/10.20508/ijrer.v12i2.12930.g8482
- 4. Bendová, M., Čanji, M., Wagner, Z., & Bogdanov, M. G. (2019). Ionic liquids as thermal energy storage materials: on the importance of reliable data analysis in assessing thermodynamic data. Journal of Solution Chemistry, 48, 949–961. https://doi.org/10.1007/s10953-018-0798-9
- 5. Bridges, N. J., Visser, A. E., & Fox, E. B. (2011). Potential of nanoparticle-enhanced ionic liquids (NEILs) as advanced heat-transfer fluids. Energy & Fuels, 25(10), 4862–4864. https://doi.org/10.1021/ef2012084
- 6. Cavieres, J., Inestrosa-Izurieta, M. J., Vasco, D. A., & Urzúa, J. I. (2022). Ionanofluids based on ionic liquid mixtures, a new approach as an alternative material for solar energy storage. Journal of Molecular Liquids, 351, 118677. https://doi.org/10.1016/j.molliq.2022.118677
- 7. Cherecheş, E. I., Bejan, D., Ibanescu, C., Danu, M., & Minea, A. A. (2021). Ionanofluids with [C2mim][CH-3SO3] ionic liquid and alumina nanoparticles: an experimental study on viscosity, specific heat and electrical conductivity. Chemical Engineering Science, 229, 116140.https://doi.org/10.1016/j.ces.2020.116140
- 8. Das, L., Rubbi, F., Habib, K., Aslfattahi, N., Saidur, R., Saha, B. B.,... & Alqahtani, T. (2021). State-of-the-art ionic liquid & ionanofluids incorporated with advanced nanomaterials for solar energy applications. Journal of Molecular Liquids, 336, 116563. https://doi.org/
- 9. Duarte, T. A., Pereira, R. F., Medronho, B., Maltseva, E. S., Krivoshapkina, E. F., Varela-Dopico, A.,...& de Zea Bermudez, V. (2024). A Glance at Novel Ionanofluids Incorporating Silk-Derived Carbon Dots. Chemistry of Materials, 36(3), 1136–1152. https://doi.org/10.1021/acs.chemmater.3c01370
- 10. Fathabadi, H. (2020). Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate. Renewable Energy, 148, 1165–1173.https://doi.org/10.1016/j.renene.2019.10.008
- 11. Hamdan M., & Sarsour M. (2018). Effect of nanoparticles on the performance of solar flat plate collectors. Journal of Ecological Engineering, 19(2), 1–7. https://doi.org/10.12911/22998993/81163
- 12. Kanti, P. K., Chereches, E. I., Minea, A. A., & Sharma, K. V. (2022). Experiments on thermal properties of ionic liquid enhanced with alumina nanoparticles for solar applications. Journal of Thermal Analysis and Calorimetry, 147(23), 13027-13038. https://doi.org/10.1007/s10973-022-11534-x
- 13. Kovács, P., Pettersson, U., Persson, M., Perers, B., & Fischer, S. (2011, August). Improving the accuracy in performance prediction for new collector designs. In Proceedings of Solar World Congress. www.https://proceedings.ises.org/?conference=swc2011
- 14. Lingala, S. S. (2023). Ionic‐Liquid‐Based Nanofluids and Their Heat‐Transfer Applications: A Comprehensive Review. ChemPhysChem, 24(22), e202300191. https://doi.org/10.1002/cphc.202300191
- 15. Main, K. L., Eberl, B. K., McDaniel, D., Tikadar, A., Paul, T. C., & Khan, J. A. (2021). Nanoparticle size effect on thermophysical properties of ionic liquids based nanofluids. Journal of Molecular Liquids, 343, 117609. https://doi.org/10.1016/j.molliq.2021.117609
- 16. Paul, T. C., Morshed, A. K. M. M., Fox, E. B., & Khan, J. A. (2017). Enhanced thermophysical properties of NEILs as heat transfer fluids for solar thermal applications. Applied Thermal Engineering, 110, 1–9. https://doi.org/10.1016/j.applthermaleng.2016.08.004
- 17. Piper, S. L., Kar, M., MacFarlane, D. R., Matuszek, K., & Pringle, J. M. (2022). Ionic liquids for renewable thermal energy storage–a perspective. Green Chemistry, 24(1), 102–117. https://doi.org/10.1039/D1GC03420K
- 18. Singh, V., Amirchand, K. D., & Gardas, R. L. (2022). Ionic liquid-nanoparticle based hybrid systems for energy conversion and energy storage applications. Journal of the Taiwan Institute of Chemical Engineers, 133, 104237. https://doi.org/10.1016/j.jtice.2022.104237
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a1fea9d-4e4c-4185-9c1d-ab2db516f11a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.