PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization study of polyAMPS@BMA core-shell particles using two types of RAFT agents

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study and application of reversible addition-fragmentation chain transfer (RAFT) polymerization have been widely reported in the literature because of its high compatibility with numerous monomers, reaction conditions, and low polydispersity index. The effect of RAFT agents on the characteristics of the final product is greatly needed to be explored. Our present study aimed to compare the influence of two different types of RAFT agents on the characteristics of the water-soluble polymer (2-acrylamido-2-methylpropane sulfonic acid) (polyAMPS) and their polyAMPS@butyl methacrylate (BMA) core-shell particles. Different analytical techniques including scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used to ascertain the final morphological, structural, and thermal properties of the resultant products. It was found that RAFT agents have shown a clear influence on the final properties of the resultant polyAMPS and their core-shell particles such as particle size, shape, size distribution, and thermal behavior. This study confirms that RAFT agents can control the final properties of the polymers and their core-shell particles.
Wydawca
Rocznik
Strony
200--208
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
  • Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
  • Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
  • Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, KP 25000, Pakistan
autor
  • Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
Bibliografia
  • [1] Yang H, Qi D, Liu Z, Chandran BK,Wang T, Yu J, et al. Soft thermal sensor with mechanical adaptability. Adv Mater. 2016;28(41):9175–81.
  • [2] Kozlovskaya V, Xue B, Kharlampieva E. shapeadaptable polymeric particles for controlled delivery. Macromolecules 2016:49(22):8373–8386.
  • [3] Feldman D. Polymer nanocomposites in medicine. J Macromol Sci. 2016;53(1):55–62.
  • [4] Bag MA, Valenzuela LM. Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review. Int J Mol Sci. 2017;18(8):1422.
  • [5] Parhi R. Cross-linked hydrogel for pharmaceutical applications: A review. Adv Pharm Bull. 2017;7(4):515–30.
  • [6] Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci Technol. 2016;48:40–50.
  • [7] Wang X. Review of characterization methods for watersoluble polymers used in oil sand and heavy oil industrial applications. Environ Rev. 2016;24(4):460–70.
  • [8] Matyjaszewski K, Spanswick J. Controlled/living radical polymerization. Mater Today. 2005l;8(3):26–33.
  • [9] Moad G. A critical survey of dithiocarbamate reversible addition-fragmentation chain transfer (RAFT) agents in radical polymerization. J Polym Sci Part A. 2019;57(3):216–27.
  • [10] Keddie DJ, Moad G, Rizzardo E, Thang SH. RAFT agent design and synthesis. Macromolecules. 2012;45(13):5321–42.
  • [11] Barner-Kowollik C, Davis TP, Stenzel MH. Synthesis of star polymers using RAFT polymerization: What is possible? Aust J Chem, 2006;59(10):719–27.
  • [12] Lewis RW, Malic N, Saito K, Evans RA, Cameron NR. Ultra-high molecular weight linear coordination polymers with terpyridine ligands. Chem Sci, 2019;10(24):6174–83.
  • [13] Caminade AM, Beraa A, Laurent R, Delavaux-Nicot B, Hajjaji M. Dendrimers and hyper-branched polymers interacting with clays: Fruitful associations for functional materials. J Mater Chem A, 2019;7(34):19634–50.
  • [14] Pourjavadi A, Rahemipoor S, Kohestanian M. Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposites with core-shell structure via RAFT polymerization. Compos Sci Technol, 2020;188:107951.
  • [15] Zhu Y, Egap E. PET-RAFT polymerization catalyzed by cadmium selenide quantum dots (QDs): Grafting-from QDs photocatalysts to make polymer nanocomposites. Polym Chem, 2020;11(5):1018–24.
  • [16] György C, Lovett JR, Penfold NJ, Armes SP. Epoxy-functional sterically stabilized diblock copolymer nanoparticles via RAFT aqueous emulsion polymerization: Comparison of two synthetic strategies. Macromol Rapid Commun, 2019;40(2):1800289.
  • [17] Whitfield R, Parkatzidis K, Truong NP, Junkers T, Anastasaki A. Tailoring polymer dispersity by RAFT polymerization: A versatile approach. Chem, 2020;6(6):1340–52.
  • [18] Henkel R, Vana P. The influence of RAFT on the microstructure and the mechanical properties of photopolymerized poly (butylacrylate) networks. Macromol Chem Phys, 2014;215(2):182–9.
  • [19] Masuda T, Takai M. Structure and properties of thermoresponsive gels formed by RAFT polymerization: Effect of the RAFT agent content. Polym J, 2020;52(12):1407–12.
  • [20] Shi X, Zhang J, Corrigan N, Boyer C. PET-RAFT facilitated 3D printable resins with multifunctional RAFT agents. Mater Chem Front, 2021;5(5):2271–82.
  • [21] Benaddi AO, Cohen O, Matyjaszewski K, Silverstein MS. RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. Polymer, 2021;213:123327.
  • [22] Kalambate PK, Huang DZ, Li Y, Shen Y, Xie M, Huang Y, et al. Core@ shell nanomaterials based sensing devices: A review. TrAC Trends Anal Chem, 2019;115:147–61.
  • [23] Platt L, Kelly L, Rimmer S. Controlled delivery of cytokine growth factors mediated by core-shell particles with poly (acrylamidomethylpropane sulphonate) shells. J Mater Chem B, 2014;2(5):494–501.
  • [24] Shallcross L, Roche K, Wilcock CJ, Stanton KT, Swift T, Rimmer S, et al. The effect of hyperbranched poly (acrylic acid) s on the morphology and size of precipitated nanoscale (fluor) hydroxyapatite. J Mater Chem B, 2017;5(30):6027–33.
  • [25] Clara I, Lavanya R, Natchimuthu N. pH and temperature responsive hydrogels of poly (2-acrylamido-2-methyl-1-propanesylfonic acid-co-methacrylic acid): Synthesis and swelling characteristics. J Macromol Sci, Part A, 2016;53(8):492–9.
  • [26] Erkartal M, Aslan A, Erkilic U, Dadi S, Yazaydin O, Usta H, Sen U. Anhydrous proton conducting poly (vinyl alcohol) (PVA)/poly(2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/1, 2, 4-triazole composite membrane. Int J Hydrogen Energy, 2016;41(26):11321–30.
  • [27] Feng Y, Xiao CF. Research on butyl methacrylate-lauryl methacrylate copolymeric fibers for oil absorbency. J Appl Polym Sci, 2006;101(3):1248–51.
  • [28] Qiao J, Hamaya T, Okada T. New highly protonconducting membrane poly(vinylpyrrolidone)(PVP) modified poly (vinylalcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs). Polymer, 2005;46(24):10809–16.
  • [29] Stace SJ, Fellows CM, Moad G, Keddie DJ. Effect of the Z-and macro R-group on the thermal desulfurization of polymers synthesized with acid/base "Switchable" dithiocarbonate RAFT agents. Macromol Rapid Commun, 2018;39(19):1800228.
  • [30] Cotton FA, Wilkinson G, Murillo CA, Bochmann M, Grimes R. Advanced inorganic chemistry. Wiley: New York; 1988.
  • [31] Erkartal M, Usta H, Citir M, Sen U. Proton conducting poly (vinyl alcohol)(PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membrane. J Membrane Sci, 2016;499:156–63.
  • [32] Novakovic K, Katsikas L, Popovic IG. The thermal degradation of poly (iso-butyl methacrylate) and poly (sec-butyl methacrylate). J Serbian Chem Soc (Yugoslavia), 2000;65(12):867–75.
  • [33] Herrera-Alonso JM, Sedlakova Z, Marand E. Gas barrier properties of nanocomposites based on in situ polymerized poly (n-butyl methacrylate) in the presence of surface modified montmorillonite. J Membrane Sci, 2010;349(1–2):251–7.
  • [34] Mohamed OA, Moustafa AB, Mehawed MA, El-Sayed NH. Styrene and butyl methacrylate copolymers and their application in leather finishing. J Appl Polym Sci, 2009;111(3):1488–95.
  • [35] Liao YH, Rao MM, Li WS, Yang LT, Zhu BK, Xu R, et al. Fumed silica-doped poly (butyl methacrylatestyrene)- based gel polymer electrolyte for lithium ion battery. J Membrane Sci, 2010;352(1–2):95–9.
  • [36] Song F, Wang Q, Wang T. The effects of crystallinity on the mechanical properties and the limiting PV (pressure×velocity) value of PTFE. Tribol Int, 2016;93:1–0.
  • [37] Suhailath K, Ramesan MT, Naufal B, Periyat P, Jasna VC, Jayakrishnan P. Synthesis, characterisation and flame, thermal and electrical properties of poly (n-butyl methacrylate)/titanium dioxide nanocomposites. Polym Bull, 2017;74(3):671–88.
  • [38] Boroujeni KP, Tohidiyan Z, Fadavi A, Eskandari MM, Shahsanaei HA. Synthesis and catalytic application of poly (2-acrylamido-2-methyl-1-propanesulfonic acidco-acrylamide) grafted on graphene oxide. ChemistrySelect, 2019;4(26):7734–44.
  • [39] Zhang L, Gao H, Liao Y. Preparation and application of poly(AMPS-co-DVB) to remove Rhodamine B from aqueous solutions. React Funct Polym, 2016;104:53–61.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a1fc8fa-4361-4d19-9a27-61cf02bba995
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.