PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification Graphite of Waste Batteries by Phosphotungstic Acid and Using as Photocatalyst for Methylene Blue Degradation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In photocatalysis water treatments, Heteropoly acids impact is most used to realize effective separation of photogenerated carriers for active degrade organic pollutants. Here, a type of Heteropoly acids used as photocatalyst was prepared, (GHPT) consisted of phosphotungstic acid (PTA) with graphite prepared from a dry battery column and reactivated with hydrochloric acid (GH). Used assays (x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), BET surface area, energy dispersive x-ray (EDS) and element mapping images) were used to demonstrate the properties, composition, and components of the GHPT. To evaluate the catalytic activity of decomposition of methylene blue (MB) using LED light. The rate of MB decomposition can be affected by the type of catalyst, initial concentration of MB dye, removal time, catalyst dose, and pH. GHPT has many advantages for its practical application, through its properties as a photocatalyst in terms of composition and components in the presence of light. The best removal percentage under the best conditions was 99.74 and total organic carbon analysis (TOC) percentage was 88.12 the at a concentration of 1 g/L of catalyst, an initial concentration of 25 ppm MB of MB, an illumination time of 180 minutes and a pH of 10.
Słowa kluczowe
Bibliografia
  • 1. Al-Sairafi F.A., Jiang C., Zhong Z., Saleh B. 2022. Study on Purification of Flake Graphite by Heat Activation and Hydrofluoric Acid. Advances in Materials and Processing Technologies, 8(4), 4564–78. https://doi.org/10.1080/2374068X.2022.2079172
  • 2. Bandi S., Ravuri S., Peshwe D.R., Srivastav A.K. 2019. Graphene from Discharged Dry Cell Battery Electrodes. Journal of Hazardous Materials, 366, 358–69. https://doi.org/10.1016/j.jhazmat.2018.12.005
  • 3. Bouleghlimat E., Davies P.R., Davies R.J., Howarth R., Kulhavy J., Morgan D.J. 2013. The effect of acid treatment on the surface chemistry and topography of graphite. Carbon, 61, 124–33. https://doi.org/10.1016/j.carbon.2013.04.076
  • 4. Chong M.N., Jin B., Chow C.W.K., Saint C. 2010. Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997– 3027. https://doi.org/10.1016/j.watres.2010.02.039
  • 5. Destiarti L., Sasri R. 2020. Application of titanium-silica-graphite composite material for photocatalytic process of methylene blue. Indonesian Journal of Chemistry, 20(6), 1271–82. https://doi.org/10.22146/ijc.48998
  • 6. Foteinis S., Monteagudo J.M., Durán A., Chatzisymeon E. 2018. Environmental sustainability of the solar photo-fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale. Science of the Total Environment, 612, 605–12. https://doi.org/10.1016/j.scitotenv.2017.08.277
  • 7. Haddad M., Abid S., Hamdi M., Bouallagui H. 2018. Reduction of adsorbed dyes content in the discharged sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process. Journal of Environmental Management, 223, 936–46. https://doi.org/10.1016/j.jenvman.2018.07.009
  • 8. Heng H., Gan Q., Meng P., Liu X. 2016. H3PW12O40/TiO2-In2O3: A visible light driven type-ii heterojunction photocatalyst for the photocatalytic degradation of imidacloprid. RSC Advances, 6(77), 73301–7. https://doi.org/10.1039/c6ra10729j
  • 9. Lakshmi S., Suvedha K., Sruthi R., Lavanya J., Varjani S., Nakkeeran E. 2020. Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus carbonarius. Bioengineered, 11(1), 708–17. https://doi.org/10.1080/21655979.2020.1780828
  • 10. Lan J., Wang Y., Huang B., Xiao Z., Wu P. 2021. Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Advances, 3(16), 4646–58. https://doi.org/10.1039/d1na00408e
  • 11. Le P.A., Le V.Q., Nguyen N.T., Nguyen V.T., Thanh D.V., Phung T.V.B. 2022. Multifunctional applications for waste zinc-carbon battery to synthesize carbon dots and symmetrical solid-state supercapacitors. RSC Advances, 12(17), 10608–18. https://doi.org/10.1039/d2ra00978a
  • 12. Lettieri S., Pavone M., Fioravanti A., Amato L.S., Maddalena P. 2021. Charge carrier processes and optical properties in TiO2 and tio2-based heterojunction photocatalysts: a review. Materials, 14 (7). https://doi.org/10.3390/ma14071645
  • 13. Liu Y., Hui H., Cao W., Mao B., Liu Y., Kang Z. 2020. Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers, 4(6), 1586–1613. https://doi.org/10.1039/d0qm00090f
  • 14. Lopes da Costa N., Pereira L.G., Resende J.V.M., Mendoza C.A.D., Ferreira K.K., Detoni C., Souza M.M.V.M., Gomes F.N.D.C. 2021. Phosphotungstic Acid on Activated Carbon: A Remarkable Catalyst for 5-Hydroxymethylfurfural Production.” Molecular Catalysis 500 (August 2020). https://doi.org/10.1016/j.mcat.2020.111334
  • 15. Mahmoud A., Elkatatny S., Mahmoud M., Abouelresh M., Abdulraheem A., Ali A. 2017. Determination of the Total Organic Carbon (TOC) Based on Conventional Well Logs Using Artificial Neural Network. International Journal of Coal Geology, 179, 72–80. https://doi.org/10.1016/j.coal.2017.05.012
  • 16. Newete S.W., Erasmus B.F.N., Weiersbye I.M., Byrne M.J. 2016. sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia Crassipes). Environmental Science and Pollution Research, 23(20), 20805–18. https://doi.org/10.1007/s11356-016-7292-y
  • 17. Rafatullah M., Sulaiman O., Hashim R., Ahmad A. 2010. Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177(1–3), 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047
  • 18. Rahmawati F., Leny Yuliati L., Alaih I.S., Putri F.R. 2017. Carbon rod of zinc-carbon primary battery waste as a substrate for CdS and tio2 photocatalyst layer for visible light driven photocatalytic hydrogen production. Journal of Environmental Chemical Engineering, 5(3), 2251–58. https://doi.org/10.1016/j.jece.2017.04.032
  • 19. Sampurnam S., Muthamizh S., Dhanasekaran T., Latha D., Padmanaban A., Selvam P., Stephen A., Narayanan V. 2019. Synthesis and characterization of keggin-type polyoxometalate/zirconia nanocomposites—comparison of its photocatalytic activity towards various organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 370, 26–40. https://doi.org/10.1016/j.jphotochem.2018.10.03
  • 20. Saravanan R., Gupta V.K., Mosquera E., Gracia F., Narayanan V., Stephen A. 2015. Visible light induced degradation of methyl orange using β-Ag0.333V2O5 nanorod catalysts by facile thermal decomposition method. Journal of Saudi Chemical Society, 19(5), 521–27. https://doi.org/10.1016/j.jscs.2015.06.001
  • 21. Shindhal T., Rakholiya P., Varjani S., Pandey A., Ngo H.H., Guo W., Ng H.Y., Taherzadeh M.J. 2021. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1) 70–87. https://doi.org/10.1080/21655979.2020.1863034
  • 22. Ugya A.Y., Hua X., Ma J. 2019. Phytoremediation as a tool for the remediation of wastewater resulting from dyeing activities. Applied Ecology and Environmental Research, 17(2), 3723–35. https://doi.org/10.15666/aeer/1702_37233735
  • 23. Wang W., Yang S. 2010. Photocatalytic degradation of organic dye methyl orange with phosphotungstic acid. Journal of Water Resource and Protection, 2(11), 979–83. https://doi.org/10.4236/jwarp.2010.211116
  • 24. We G., Zhang L., Wei T., Luo Q., Tong Z. 2012. “UV-H2O2 degradation of methyl orange catalysed by H3PW12O40/activated clay. Environmental Technology (United Kingdom), 33(14), 1589–95. https://doi.org/10.1080/09593330.2011.639395
  • 25. Yerima E.A., Ogwuche E., Ndubueze C.I., Muhammed K.A., Habila J.D. 2024. Photocatalytic degradation of acid blue 25 dye in wastewater by zinc oxide nanoparticles. Trends in Ecological and Indoor Environmental Engineering, 2(1), 50–55. https://doi.org/10.62622/teiee.024.2.1.50-55
  • 26. Zheng M., He H., Li X., Yin D. 2022. Imidazolized activated carbon anchoring phosphotungstic acid as a recyclable catalyst for oxidation of alcohols with aqueous hydrogen peroxide. Frontiers in Chemistry, 10, 1–13. https://doi.org/10.3389/fchem.2022.925622
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a1d3c8c-dbc5-4b4d-b47f-e93d0844e1fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.