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Abstract:
The usage of real-valued, local descriptors in computer
vision applica ons is o en constrained by their large me-
mory requirements and long matching me. Typical ap-
proaches to the reduc on of their vectors map the des-
criptor space to the Hamming space in which the obtai-
ned binary strings can be efficiently stored and compa-
red. In contrary to such techniques, the approach pro-
posed in this paper does not require a data-driven bi-
narisa on process, but can be seen as an extension of
the floa ng-point descriptor computa on pipeline with a
step that allows turning it into a binary descriptor. In this
step, binary tests are performed on values determined
for pixel blocks from the described image patch. In the
paper, the proposed approach is described and applied
to two popular real-valued descriptors, SIFT and SURF.
The paper also contains a comparison of the approach
with state-of-the-art binarisa on techniques and popu-
lar binary descriptors. The results demonstrate that the
proposed representa on for real-valued descriptors out-
performs other methods on four demanding benchmark
image datasets.

Keywords: SIFT, SURF, LDAHash, binary tests, image ma-
tching, image recogni on

1. Introduc on
Real-valued, local feature descriptors, such as

Scale-Invariant Feature Transform (SIFT) [24] and
Speeded Up Robust Features (SURF) [5] have alre-
ady found their place in many computer vision ap-
plications, e.g., recognition [14], localisation [11, 12],
tracking [8, 34], simultaneous localisation and map-
ping [17], or retrieval [6,15]. However, there is a need
for the development of more ef icient techniques, in
terms of computation time, storage requirements, or
robustness [6, 10, 12, 13, 25, 27]. Since SIFT and SURF
are among the best performing loating-point descrip-
tors [21, 26], there are many works which aim to pre-
serve their distinctive properties while performing a
dimensionality reduction of their long vectors [19], or
storing them as binary strings after mapping the des-
criptor space into the Hamming space [35]. A trans-
formation to binary strings allows for faster feature
matching, since such strings can be ef iciently com-
pared on modern CPUs. For example, in [35] LDA-
Hash was introduced, in which a projection matrix
is selected and computed minimising in-class covari-
ance andmaximising covariance across classes of SIFT
features. Then, a threshold vector is used for bina-

risation of projections and providing binary strings
which maximise recognition rate. In another data-
driven work [31], a vector of medians was used for bi-
narisation of SIFT keypoints. The same approach can
be easily applied to SURF vectors. The recently in-
troduced Bi-DCT descriptor for dense matching [22]
converts loating-point vectors into binary strings, ta-
king into account DCT coef icients. The method ex-
ploits frequency and orientation information based on
2D DCT. In [16], in turn, dimensionality reduction of
SIFT descriptor was performed using matched des-
criptor pairs and a linear discriminant embedding.
PCA-SIFT technique [19] produces shorter real-valued
descriptors based on principal component analysis
(PCA) which is applied to SIFT keypoints. A more re-
cent technique, shown in [18], uses a spectral embed-
ding for transformation of the original feature space
into an low-dimensional space, preserving the mani-
fold structure and a relevance relationship among the
images.

The approach introduced in this paper transforms
high-dimensional information on the described image
patch centred at the keypoint to a binary string. It is
devoted to hand-crafted loating-point techniques for
which the patch division into smaller pixel regions, or
blocks, is easy accessible. In a typical binary descrip-
tor, binary tests between intensities of pairs of points
within the image patch are performed. This can be
seen in Binary Robust Independent Elementary Fea-
tures (BRIEF) [7], where point pairs are sampled from
isotropic Gaussian distribution. Binary Robust Inva-
riant Scalable Keypoints (BRISK) [23], in turn, uses
a circular pattern with equally spaced points for this
purpose, and Oriented FAST and Rotated BRIEF (ORB)
[8, 10, 33] uses a learned sampling pattern and FAST
[32] technique to generate keypoints. A retinal sam-
pling pattern is used in Fast Retina Keypoint (FREAK)
[2]. These approaches perform binary tests on pixel
intensities, what can make them more sensitive to
noise. Therefore, recently introduced binary descrip-
tors perform tests on larger patch regions. For ex-
ample, in Local Difference Binary (LDB) [39, 40] and
Modi ied-LDB [3] (AKAZE), the described patch is di-
vided into 4, 9, 16, and 25 disjunctive blocks of pixels
(cells) and then binary tests are performed on their
mean intensities and directional gradients. A more
distinctive approach can be found in [30], where Bi-
nary Robust Fast Features (BRAF) descriptor employs
four image patches with scale-dependent sizes are di-
vided into 3 × 3 pixel blocks, or in Binary Descrip-
tor with Shared Pixel Blocks (BDSB) [29], in which
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overlapping pixel regions are used. These pixel block-
based descriptors perform all-against-all tests separa-
tely for each patch and for each the type of information
extracted from patches, i.e., intensities and gradients.

In the literature, apart from hand-crafted soluti-
ons, there are also data-driven binary approaches in
which the image patch is divided into pixel regions
and then values used for their description are compa-
red optimising performance criteria. Tests on intensi-
ties and gradients of regional invariants can be seen
in Ordinal and Spatial information of Regional Invari-
ants (OSRI) [38]. In OSRI, a resulted binary string is
long and requires further reduction. This is also pre-
sent in LDB [40]. BinBoost descriptor [36] replaces
binary tests with learned binary hash functions [36].
AdaBoost classi ier andgradient-based image features
are used here. Receptive Fields Descriptor (RFD) [9]
uses thresholded ields’ responses of rectangular or
Gaussian pooling regions, and Binary Online Learned
Descriptor (BOLD) [4] is independently optimised for
each image patch. The state-of-the-art learning-based
binary descriptors (e.g., BinBoost), as well as hand-
crafted block-based descriptors (e.g., LDB, AKAZE)
have computation time close to loating-point techni-
ques, what makes a binary descriptor build on the top
of a loating-point technique still worthy of considera-
tion. Furthermore, dimensionality reduction approa-
cheswith a projectionmatrixmay also suffer from lon-
ger computation time due to multiplication of feature
vectors by the matrix [35].

The technique introduced in this paper is related
to pixel block-based binary descriptors, in which tests
on values representing some image regionswithin the
patch are performed. Since modi ications of SIFT and
SURF are presented and evaluated in further parts of
this paper, it can be said that they are novel binary re-
presentatives of these techniques.

The rest of this paper is organised as follows.
Section 2 covers the description of the proposed ap-
proach and its application. Experimental results with
related discussions are presented in Section 3. Finally,
Section 4 concludes the paper and indicates possible
directions of future research.

2. Approach
2.1. Binary Tests for a Real-Valued Descriptor

It can be assumed that a real-valued descriptor
provides a description of the image patch centred at
the detected keypoint. Let Bi denotes a pixel block
within the patch, i = 1, 2 . . . , N , where N is the
number of such blocks. Each i-th block is described
with a vector V i

j having M real-valued dimensions,
V i
j=1, V

i
j=2, . . . , V

i
j=M . The size of the patch and its di-

vision depends on descriptor computation pipeline. In
the proposed approach, the binary string is created
using all-against-all binary tests on values represen-
ting blocks [3,29,30,39,40]. Thus, the computation of
the binary string b can be written as:

b =
M∑
j=1

 ∑
1≤o≤NC2

2o−1Tj

 , (1)

where o denotes a pair of blocks, Bl and Bk , l 6=
k, {l, k} = 1, 2, . . . , N . In the equation, the sum sign
denotes concatenation of strings with binary values.
There are NC2 = N ! \ (2!(N − 2)!) binary tests for
each j-th dimension, the test Tj is calculated using eq.
(2):

Tj =

{
1, if V l

j < V k
j

0, otherwise.
(2)

2.2. Binary SIFT and SURF
In SIFT [24], an image patch centred at keypoint lo-

cation is extracted. Its size depends on the keypoint’s
scale. Then, local gradients are used to provide a domi-
nant orientation of the patch. The orientation is used
for orienting local gradients determined for 4×4 grids
placed within each of 16 pixel blocks. The gradients
are quantised into eight angular bins, and then 128-
dimensional, weighted histogram is determined. The
histogram is created using magnitudes and orientati-
ons. Magnitudes are weighted using Gaussian, and the
resulting vector is normalised to unit vector to ensure
robustness against illumination changes. Extension of
SIFTdescriptor pipelineusing the approachpresented
in this paper is applied as follows. Each of 16 blocks
(N = 16) is represented by eight-dimensional (M =
8), real-valued vector. Therefore, there are 120 binary
tests (16C2) for each dimension, and the inally obtai-
ned binary string has 960 bits. The string is long and
that may require additional dimensionality reduction
(as e.g., 21576-bit string in OSRI [38]). However, in
some applications it would be more convenient to use
a small number of longer descriptors with high discri-
minative properties than a large number ofworse per-
forming descriptors with short binary strings.

In SURF [5], similarly to SIFT, a square patch is di-
vided into 16 pixel blocks (4×4), and the descriptor is
createdby aunionof vectors resulted fromsumsof ho-
rizontal and vertical Haarwavelet responses and their
absolute values. The Haar wavelet responses for each
pixel block are computedat 5×5 regularly spaced sam-
ple points and then weighted with a Gaussian in or-
der to introduce better robustness against geometri-
cal transformations. Finally, each pixel block is descri-
bed using four values, then the 64-dimensional vector
is further transformed into unit vector to provide con-
trast invariance [5]. Since the patch is described using
N = 16 blocks, and each block is represented byM = 4
values, the resulting binary string is composed of 480
bits (4× 16C2). It is worth noticing that recently intro-
duced AKAZE has a similar length (486 bits).

3. Experimental Evalua on
The binary versions of SIFT and SURF created

with the feature representation introduced in this pa-
per were evaluated and compared with their loating-
point counterparts. The state-of-the-art techniques
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designed to reduce their high-dimensionality (LDA-
Hash [35], binarised SIFT [31], binarised SURF [31])
were also used, as well as the state-of-the-art binary
descriptors (AKAZE [3], BRISK [23], and ORB [33]).
AKAZE, being an example of hand-crafted pixel block-
based descriptor, is closer to the introduced techni-
que, in terms of performed steps in descriptor’s com-
putation pipeline, than binarisation techniques app-
lied to the resulted loating-point vectors. All three
compared binary descriptors are equipped in the full
descriptor pipeline, i.e., they were designed to be able
to detect and describe interest points.

In experiments, single-threaded applications
with descriptors were run on a CPU with Intel Core
i5-5200u 2.2 GHz, 8 GB RAM, and Microsoft Win-
dows 7. Java implementations of SURF and SIFT
from BoofCV library (http://boofcv.org/) were
used [1], as well as Java interface to OpenCV
implementations of AKAZE [3], BRISK [23],
and ORB [33] descriptors (http://opencv.org,
https://github.com/bytedeco/javacv). The aut-
hor of this work implemented LDAHash and
approaches introduced by Peker [31] in Java
using known projection matrices (LDAHash,
http://cvlab.ep l.ch/research/detect/ldahash) or
the published description [31].
3.1. Image Matching

The compared techniqueswere evaluated in terms
of the area under Recall vs. 1-Precision curve calcula-
ted for corresponding pairs of images that belong to
image benchmarks designed to test matching perfor-
manceof local featuredescriptors [6,12,13,25,27]. For
this purpose, Oxford [25] and Heinly et al. [13] data-
sets were used. The datasets contain base images and
sequences of images that exhibit different amount of
most popular transformations, e.g., rotation, scaling,
viewpoint change, blur, illumination, exposure, and
JPEG compression. Exemplary image sentences from
these datasets can be seen on ig. 1. In order to calcu-
late the area under Recall vs. 1-Precision curve, for the
base image and its transformed equivalent, a prede-
ined number of interest points on both images were
detected and described. Then, for each keypoint from
the base image its corresponding keypoint from the
second image was determined, taking into account a
distance ratio between the closest and the second clo-
sest keypoint from that image, localisation error of the
found keypoint and an overlap size betweendescribed
image patches. In this paper, the following valueswere
used [13, 25]: 0.8 distance ratio, three pixel localisa-
tion error, and 40% overlap. Binary descriptors were
compared using Hamming distance, while loating-
point vectorswere comparedwith Euclidean distance.
Precision of matching was calculated as the number of
returned correctmatches to the allmatches, andRecall
as thenumber of returned correctmatches to all possi-
ble correct matches [13]. Finally, Recall vs. 1-Precision
curves were obtained using threshold-based simila-
rity matching [5] for 500 keypoints with the strongest
response per image.

Obtained results are presented in Tab. 1 and Tab.

Fig. 1. Exemplary images from Oxford and Heinly et al.
banchmark datasets

2. On the basis of matching results it can be said that
for Oxford dataset the introduced binary versions of
SURF and SIFT performed slightly worse than their
real-valued counterparts. However, for Heinly et al.
dataset and the sequences from Oxford dataset with
illumination and blur changes, they were better. Furt-
hermore, SURFb and SIFTb clearly outperformed ot-
her feature binarisation techniques. Here, SIFTb was
the leading binary technique for seven image sequen-
ces, and six times was the best descriptor in general.
SURFb, in turn, outperformed other techniques six ti-
mes, and for two image sequenceswas the leadingper-
former.

The comparison of description time of compared
approaches, as well as their lengths, is given in tab.
4. In the table, the average timings measured per
keypoint for Bikes sequence from Oxford dataset [25]
are reported. It can be seen that the presented ap-
proach requires the addition of 2 to 6% of descrip-
tor computation time in order to obtain binary repre-
sentation of described image patch. This takes lon-
ger than simple thresholding [31], but is two times
faster than more advanced LDAHash. Binary descrip-
tors designed to perform fast detection and descrip-
tion of interest points are faster, but as it was shown in
imagematching experiments, as well as in recognition
tests (Section 3.2), the usage of the introduced techni-
que is justi ied by its superior performance. Such per-
formance is often important in practical tasks, where
unequivocal description of an image patch may lead
to, e.g., near-duplicate content detection [20] The ma-
tching time depends on the length of the descriptor,
and both descriptors are shorter than their loating-
point counterparts. SIFTb’s binary string allows for
faster matching than 128-dimensional vector used by
SIFT. However, a practical usage of both techniques
may require an application of a salient bit-selection
technique [29,38,40].

3.2. Recogni on
The performance of descriptors was also

compared in matching-based recognition
tests on two demanding image collections,
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Tab. 1. Comparison of matching performance measured in terms of mean area under Recall vs. 1- Precision curves on
Oxford dataset

Method Image sequence and transformation
Bark Bikes Boat Graf iti Leuven Ubc Wall Trees

Rotation Blur Rotation Viewpoint Illumination JPEG Viewpoint Blur
SURF [5] 0.278 0.578 0.386 0.180 0.587 0.746 0.438 0.382
SIFT [24] 0.144 0.534 0.212 0.177 0.642 0.604 0.454 0.391
LDAHash [35] 0.118 0.557 0.176 0.157 0.624 0.587 0.363 0.291
Bin. SURF [31] 0.045 0.400 0.113 0.047 0.408 0.496 0.105 0.105
Bin. SIFT [31] 0.103 0.341 0.110 0.074 0.485 0.496 0.322 0.237
AKAZE [3] 0.177 0.368 0.199 0.121 0.383 0.466 0.245 0.204
BRISK [23] 0.057 0.324 0.035 0.064 0.132 0.333 0.091 0.129
ORB [33] 0.033 0.060 0.043 0.025 0.133 0.181 0.090 0.077
SURFb 0.229 0.627 0.347 0.164 0.619 0.733 0.323 0.325
SIFTb 0.124 0.615 0.199 0.225 0.675 0.600 0.380 0.286
Note: The best value for each image sequence is written in boldface, the best result for the binary
approach is underlined.

Tab. 2. Comparison of matching performance measured in terms of mean area under Recall vs. 1- Precision curves on
Heinly et al. dataset

Method Image sequence and transformation
Ceiling Day and night Rome Semper Venice
Rotation Illumination Rotation Rotation Scaling

SURF [5] 0.458 0.061 0.563 0.318 0.652
SIFT [24] 0.616 0.158 0.658 0.62 0.151
LDAHash [35] 0.604 0.156 0.665 0.61 0.138
Bin. SURF [31] 0.257 0.037 0.358 0.239 0.326
Bin. SIFT [31] 0.542 0.057 0.407 0.549 0.120
AKAZE [3] 0.464 0.038 0.354 0.267 0.225
BRISK [23] 0.320 0.050 0.355 0.395 0.244
ORB [33] 0.083 0.019 0.125 0.119 0.135
SURFb 0.439 0.128 0.603 0.387 0.664
SIFTb 0.625 0.199 0.690 0.633 0.164
Note: The best value for each image sequence is written in boldface, the best
result for the binary approach is underlined.

Tab. 3. Comparison of recogni on performance on the BR and UKBench datasets

Method Test set in the BR dataset UKBench
Autumn Autumn Winter Winter Spring Spring
day night day night day night

Recognition rate (in %) Score
SURF [5] 34.6 40.6 32.2 47.4 40.4 41.8 2.444
SIFT [24] 56.8 45.4 62.4 53.6 65.0 50.0 3.000
LDAHash [35] 42.6 37.8 51.2 47.2 54.8 44.4 2.859
Bin. SURF [31] 28.0 31.4 23.0 32.0 25.4 32.8 2.262
Bin. SIFT [31] 23.4 18.0 30.0 19.0 23.0 22.0 2.342
AKAZE [3] 32.2 40.8 28.8 44.0 40.6 58.0 2.757
BRISK [23] 2.60 2.40 4.40 2.40 4.00 8.60 1.347
ORB [33] 16.2 16.0 11.6 16.0 18.0 36.4 2.199
SURFb 52.2 68.4 47.2 65.2 54.0 66.8 2.791
SIFTb 58.0 54.6 72.0 60.6 65.8 52.8 3.071
Note: The best value for each test is written in boldface.

the UKBench [28] and the Beautiful Rzeszow
(http://marosz.kia.prz.edu.pl/br.html) [30] data-
sets. Some images from these datasets are shown on
ig. 2. The UKBench dataset contains images of 2550
objects. There are four images per object. According

to the proposed performance index [28], an average
of top four results for the irst objects’ images is used.
The second benchmark used in recognition tests, the
Beautiful Rzeszow (BR) dataset, contains 3000 images
of 50 sites in Rzeszow, Poland. There are 10 images of
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(a) (b)

Fig. 2. Exemplary images from object recogni on benchmarks: (a) UKBench, and (b) the BR

Tab. 4. Comparison of descrip on me and length

Method Description time (ms) Length
SURF [5] 0.140 64 Floats
SIFT [24] 0.752 128 Bytes
LDAHash [35] SIFT + 38 us 128 Bits
Bin. SURF [31] SURF + 2 us 64 Bits
Bin. SIFT [31] SIFT + 3 us 128 Bits
AKAZE [3] 0.141 486 Bits
BRISK [23] 0.042 512 Bits
ORB [33] 0.022 256 Bits
SURFb SURF + 9 us 480 Bits
SIFTb SIFT + 20 us 960 Bits
Note: Description time is given per keypoint.

each site captured at a different time of the day (day
and night) and season (spring, autumn, and winter),
in 2015. The objects were photographed introducing
viewpoint, scale, and rotation changes. The time the
images were captured also resulted in challenging
illumination conditions and many occlusions, which
are not present in popular UKBench. The recognition
performance on this dataset was tested using images
taken at the given time of the day as queries and
the top one returned results was assessed. Here, the
recognition accuracy is presented as the percent of
correctly recognised objects. In the object recognition
tests, test images were recognised using k-nearest
neighbour classi ier (k=1), which assigned learned
labels taking into account the largest number of
returned matched descriptor pairs between the test
and the learning images. In matching, the threshold of
0.8 was used. For UKBench, due to longmatching time
for real-valued descriptors, the score was reported on
the basis of the irst 3000 images.

Table 3 contains recognition results for these two
datasets. It can be seen that both introduced binary
descriptors, SURFb and SIFTb, were better than com-
pared techniques. Due to high robustness of SIFT des-
criptor, tests with day images were easier for its deri-
vative approaches (SIFTb and LDAHash). However, for

the night images, SURFb turned out to be better, since
performed binary tests increased illumination invari-
ance of the keypoint’s description. Interestingly, both
techniques improved results obtained by SURF and
SIFT, what with faster matching time and shorter des-
criptor length has a practical importance. This can be
also observed for UKBench dataset, where SIFTb out-
performed other methods. For this dataset, SIFT was
better than SURF, what also indicates that the develo-
ped binary representation is limited by the distinctive
properties of binarised real-valued descriptor.

4. Conclusion
In this paper, an approach to an extension of

loating-point descriptor’s computation pipeline with
a step that allows turning them into binary descrip-
tors was shown. The approach performed binary tests
on values determined by loating-point descriptors for
pixel blocks within the image patch in order to cre-
ate a binary string. The resulted binary representa-
tion was evaluated and compared with popular fea-
ture binarisation techniques, as well as with state-of-
the-art binary descriptors equipped with full descrip-
tor pipeline. Obtained results on four image bench-
marks are promising and showed that two introduced
binary representations built on top of SURF and SIFT
techniques are highly competitive, outperforming ot-
her approaches in matching and recognition tasks.

Future works will consider dimensionality re-
duction of obtained binary strings, as well as experi-
ments with other real-valued, local descriptors, or ot-
her descriptor types [37].
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