Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of experimental studies on pressure drops during the flow of cocamidopropyl betaine (CAPB) and DEA cocamide solutions with the addition of ethylene glycol. The degree of drag reduction during the flow of the CAPB/DEA aqueous solution and with the 10% addition of ethylene glycol was similar. A significant reduction in pressure drops was also observed at the 20% concentration of ethylene glycol. However, the increase in the concentration of ethylene glycol resulted in the reduction of flow resistance at higher temperatures. The resistance of the micellar microstructure of CAPB/DEA solutions to mechanical degradation depends strongly on the pH level. Significant changes in flow properties were observed when the initial pH was alkaline. The solution with initial pH close to neutral was stable over time, though reduced resistance to degradation with time was also observed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
67--71
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wz.
Twórcy
autor
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Department of Chemical Engineering and Equipment, 60-965, Poznan, Poland
autor
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Department of Chemical Engineering and Equipment, 60-965, Poznan, Poland
autor
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Department of Chemical Engineering and Equipment, 60-965, Poznan, Poland
autor
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Department of Chemical Engineering and Equipment, 60-965, Poznan, Poland
Bibliografia
- 1. Broniarz-Press, L., Różański, J. & Różańska, S. (2007). Drag reduction effect in pipe systems and liquid falling film flow. Rev. Chem. Eng. 23,149–245. DOI: 10.1515/REVCE.2007.23.3-4.149.
- 2. Ayegba, P.O., Edomwonyi-Otu, L.C., Yusuf, N. & Abubakar, A. (2021). A review of drag reduction by additives in curved pipes for single-phase liquid and two-phase flows. Eng. Rep. 3, e12294, DOI: 10.1002/eng2.12294.
- 3. Kobayashi, Y., Gomyo, H. & Arai, N. (2021). Molecular Insight into the Possible Mechanism of Drag Reduction of Surfactant Aqueous Solution in Pipe Flow. J. Mol. Sci. 22, 7573. DOI: 10.3390/ijms22147573.
- 4. Gong, W., Shen, J., Dai, W., Li, K. & Gong, M. (2021). Research and applications of drag reduction in thermal equipment: A review. J. Heat. Mass Transf. 172, 121–152. DOI: 10.1016/j.ijheatmasstransfer.2021.121152.
- 5. Utomo, A., Riadi, A., Gunawan & Yanuar. (2021). Drag Reduction Using Additives in Smooth Circular Pipes Based on Experimental Approach. Processes. 9, 1596. DOI: 10.3390/pr9091596.10.3390/pr9091596
- 6. Aguilar, G., Gasljevic, K. & Matthys, E.F. (2001). Asymptotes of maximum friction and heat transfer reductions for drag-reducing surfactant solutions. J. Heat Mass Transf. 44, 2835–2843. DOI: 10.1016/S0017-9310(00)00319-7.
- 7. Usui, H., Itoh, T. & Saeki, T. (1998). On pipe diameter effects in surfactant drag-reducing pipe flow. Rheol. Acta. 37, 122–128. DOI: 10.1007/s003970050098.
- 8. Wei, J.J., Kawaguchi, Y., Li, F.C., Yu, B., Zakin, J.L., Hart, D.J. & Zhang, Y. (2009). Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution. J. Heat Mass Transf. 52, 3547–3554. DOI: 10.1016/j.ijheatmasstransfer.2009.03.008.
- 9. Zhang, Y., Schmidt, J., Talmon, Y. & Zakin, J.L. (2005). Co-solvent effects on drag reduction, rheological properties and micelle microstructures of cationic surfactants. J. Colloid Interface Sci. 286, 596–709. DOI: 10.1016/j.jcis.2005.01.055.
- 10. Haruki, N., Inaba, H., Horibe, A. & Kodama, Y. (2009). Flow resistance and heat transfer characteristics of organic brine (Propylene Glycol) solution by adding flow drag reduction additive, Experimental Heat Transfer: J. Thermal Energy Generat., Transport, Storage, and Conversion 22, 283–299. DOI: 10.1080/08916150903099173.
- 11. Haruki, N., Inaba, H., Horibe, A. & Tanaka, S. (2006). Viscosity measurements of ethylene glycol solution with flow drag reduction additives. Heat Transfer-Asian Research. 35(8), 553–557. DOI: 10.1002/htj.20134.
- 12. Różański, J. (2015). Pressure loss and convevtive heat transfer during the flow of surfactant solutions, Publishers of Poznan University of Technology, Poznań.
- 13. Różańska, S. & Różański, J. (2020). Shear and extensional rheology of aqueous solutions of cocamidopropyl betaine and sodium dodecyl sulfate mixture. J. Dispers. Sci. Technol. 41, 733–741. DOI: 10.1080/01932691.2019.1611442.
- 14. Różański, J., Różańska, S., Mitkowski, P.T., Szaferski, W., Wagner, P. & Frankiewicz, A. (2021). Drag Reduction in the Flow of Aqueous Solutions of a Mixture of Cocamidopropyl Betaine and Cocamide DEA. Energies. 14, 2683-1-2683-15. DOI: 10.3390/en14092683.
- 15. Keera, S.T. & Deyab, M.A. (2005). Effect of some organic surfactants on the electrochemical behaviour of carbon steel in formation water. Colloids Surf. A: Physicochem. Eng. Asp. 266, 129–140. DOI: 10.1016/j. colsurfa.2005.05.069.
- 16. Choi, U.S. & Kasza, K.E. (1981). Long Term Degradation of Dilute Polyacrylamide Solutions In Turbulent Flow Drag Reduction in Fluids Flows, 163–169.
- 17. Metzner, A.B., & Reed, J.C. (1995). Flow of non-newtonian fluids – Correlation of the laminar, transition, and turbulent-flow regions. AJChE Journal. 1, 434–440. DOI: 10.1002/aic.690010409.
- 18. Myska, J. & Mik, V. (2004). Degradation of surfactant solutions by age and by flow singularity. Chem. Eng. Process. 43, 1495–1501. DOI: 10.1016/j.cep.2004.02.001.
- 19. Tamano, S., Itoh, M., Kato, K. & Kokota, K. (2010). Turbulent drag reduction in nonionic surfactant solutions. Phys. Fluids. 22, 55102–55112. DOI: 10.1063/1.3407666.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a09eab9-dbe5-489b-9629-c5d551da6147