PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bio Oil Production by Thermal and Catalytic Pyrolysis of Waste Tires

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, pyrolysis of shredded waste tire was carried out thermally and catalytically in a fixed bed reactor. Thermal pyrolysis was performed at temperatures of 330 °C, 430 °C, 530 °C, and 630 °C under Ar. flow rate of 0.5 L/min as a carrier gas and retention time of 15 min catalytic pyrolysis was carried out at temperature of 530 °C. The effects of temperature and two types of catalysts (CaCO3 and SiO2/Al2O3) were studied on the yield of pyrolysis products. Fourier transform infrared spectroscopy (FTIR) and Gas chromatography mass spectrometry (GC-MS) analysis for the oil products that were obtained by thermal and catalytic pyrolysis at 530 °C for chemical characterization. Oil, solid, and gas products yield by thermal pyrolysis at 530 °C were 50 wt. %, 35.6 wt. %, and 14.4 wt. % respectively, when the CaCO3 catalyst was used, the products distribution was 52 wt. %, 38.5 wt. %, and 9.5 wt. % respectively. While using SiO2 /Al2O3 the pyro oil, and char, and gas were decreased to 47 wt. %, 38 wt. %, and 15 wt. % respectively. The chemical composition of pyrolysis oil mainly included hydrocarbons compounds, predominantly Limonene which was represented by Cyclohexene, 1-methyl-4-(1-methylethenyl).
Słowa kluczowe
Rocznik
Strony
189--199
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Environmental Engineering Department, College of Engineering, Mustansiriayah University, Baghdad, Iraq
  • Environmental Engineering Department, College of Engineering, Mustansiriayah University, Baghdad, Iraq
  • zaidun.naji77@uomustansiriyah.edu.iq
  • Environmental Research, University of Technology, Baghdad, Iraq
Bibliografia
  • 1. Abdelbasir, S.M. 2021. Recycling, Management, and Valorization of Industrial Solid Wastes. Waste Recycling Technologies for Nano materials Manufacturing, 25–63.
  • 2. Ahoor, A.H. & Zandi-Atashbar, N. 2014. Fuel production based on catalytic pyrolysis of waste tires as an optimized model. Energy conversion and management, 87, 653–669.
  • 3. Alias, R. & Rafee, A.M. 2020. Characterization of liquid oil from pyrolysis of waste tire. Malaysian Journal of Chemical Engineering and Technology (MJCET), 3(1), 62–68.
  • 4. Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., Olazar, M. 2020. Waste tire valorization by catalytic pyrolysis – A review. Renewable and Sustainable Energy Reviews, 129.
  • 5. Demirbas, A., Al-sasi, B.O., Nizami, A. 2016. Environmental Effects Conversion of waste tires to liquid products via sodium carbonate catalytic pyrolysis. Energy sources, part A: recovery, utilization, and environmental effects, 38(16), 2487–2493.
  • 6. Dick, D.T. & Agboola, O. 2020. Pyrolysis of waste tyre for high-quality fuel products: A review. AIMS Energy, 8(5), 869–895.
  • 7. Efeovbokhan, V.E., Akinneye, D., Ayeni A.O., et al. 2020. Experimental dataset investigating the effect of temperature in the presence or absence of catalysts on the pyrolysis of plantain and yam peels for bio-oil production. Data Brief 31, 105804.
  • 8. Feraldi, R., Cashman, S., Huff, M., Raahauge, L. 2013. Comparative LCA of treatment options for US scrap tires: material recycling and tire derived fuel combustion. Int J Life Cycle Assess 18, 613–625.
  • 9. Guven, N., Guneş, A.N., & Yücedağ, C. 2016. Energy Yield from Waste Tires Using Pyrolysis Method.
  • 10. Iqbal, A., Liu, X., & Chen, G.H. 2020. Municipal solid waste: Review of best practices in application of life cycle assessment and sustainable management techniques. Science of the Total Environment, 138622.
  • 11. Januszewicz, K., Kazimierski, P., Kosakowski, W., & Lewandowski, W.M. 2020. Waste tires pyrolysis for obtaining limonene. Materials, 13(6), 1359.
  • 12. Martínez, J.D, Puy, N., Murillo, R., García, T., Navarro, M.V., Mastral, A.M. 2013. Waste tire pyrolysis: A review. Renewable and Sustainable Energy Reviews, 179–213.
  • 13. Kabir, G. & Hameed B.H. 2017. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew Sustain Energy Rev, 70, 945–967.
  • 14. Lewandowski, W.M., Januszewicz, K., & Kosakowski, W. 2019. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type – A review. Journal of Analytical and Applied Pyrolysis, 140, 25-53.
  • 15. Mabood, F., Jan, M.R., Jabeen, F. 2011. Catalytic pyrolysis of waste inner rubber tube into fuel oil using alumina and calcium carbonate base catalysts. Journal of the Chemical Society of Pakistan, 33(1), 38–42.
  • 16. Mariusz, W., Janus, R. & Lewandowski, M., 2020. Pyrolysis Oil from Scrap Tires as a Source of Fuel Components : energy & fuel, 34(5), 5917–5928.
  • 17. Mikulski, M., Ambrosewicz-Walacik, M., Hunicz, J., Nitkiewicz, S. 2021. Combustion engine applications of waste tyre pyrolytic oil. Progress in Energy and Combustion Science, 85, 100915.
  • 18. Muenpol, S., Jitkarnka S. 2016. Effects of Fe supported on zeolites on structures of hydrocarbon compounds and petrochemicals in waste tire-derived pyrolysis oils. J Anal Appl Pyrolysis, 117, 147–156.
  • 19. Muhammad, R., Ali, Y., Messaddeq, Y., Martines, M.A.U., Naveed Umar, M., Khan, S. W., Riaz, A. 2021. Conditions Optimization and Physiochemical Analysis of Oil Obtained by Catalytic Pyrolysis of Scrap Tube Rubber Using MgO as Catalyst. Catalysts, 11(3), 357.
  • 20. Ngxangxa, S., 2016. Development of GC-MS methods for the analysis of tyre pyrolysis oils. Stellenbosch Unversity.
  • 21. Osayi, J.I., Iyuke, S., Daramola, M.O., Osifo, P., Van Der Walt, I.J., Ogbeide, S.E. 2018. Pyrolytic conversion of used tyres to liquid fuel: characterization and effect of operating conditions. Journal of Material Cycles and Waste Management, 1273–1285.
  • 22. Pooja S., Kachhadiya P., Khirsariya P. 2017. Pyrolysis of waste tires to fuel oil. ICCI. 2017.
  • 23. Quaicoe, I., Souleymane, A.A., Kyeremeh, S.K., Appiah-Twum, H., & Ndur, S.A. 2020. Vacuum Pyrolysis of Waste Vehicle Tyres into Oil Fuel Using A Locally, Fabricated Reactor. Ghana Mining Journal, 20(1), 59–65.
  • 24. Rasheva, V., Komitov, G., Binev, I., & Valtchev, G. 2020. Structural and Technological Features of an Installation for Recovery of End-of-life Automobile Tires. In E3S Web of Conferences (Vol. 180, 01016). EDP Sciences.
  • 25. Sathiskumar, C. & Karthikeyan, S. 2019. Recycling of waste tires and its energy storage application of by-products – a review. Sustainable Materials and Technologies, 22, e00125.
  • 26. Singh, D.P., Kothari, R., & Tyagi, V.V. (Eds.). 2019. Emerging Energy Alternatives for Sustainable Environment. CRC Press.
  • 27. Suchocki, T., Lampart, P., Kazimierski, P., Januszewicz, K., Gawron, B. 2021. Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil. Energy, 215, 119125.
  • 28. Susa, D. & Haydary, J., 2014. Sulphur distribution in the products of waste tire pyrolysis Sulfur distribution in the products of waste tire pyrolysis. Chemical papers, 67(12), 1521–1526.
  • 29. Tavera-Ruiz, C., Gauthier-Maradei, P., Capron, M., Ferreira-Beltran, D., Palencia-Blanco, C., Morin, J.C., Dumeignil, F. 2019. An alternative to the cymenes production from scrap tire rubber using heteropolyacid catalysts. Waste and Biomass Valorization, 10(10), 3057–3069.
  • 30. Toteva, V., & Stanulov, K. 2020. Waste tires pyrolysis oil as a source of energy: Methods for refining. Progress in Rubber, Plastics and Recycling Technology, 36(2), 143–158.
  • 31. Yaqoob, H., Teoh, Y.H., Jamil, M.A., & Gulzar, M. 2021. Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review. Journal of the Energy Institute.
  • 32. Yazdani, E., Hashemabadi, S.H., & Taghizadeh, A. 2019. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Waste Management, 85, 195–201.
  • 33. Zhang, Y., Tao, Y., Huang, J., & Williams, P. 2017. Influence of silica–alumina support ratio on H2 production and catalyst carbon deposition from the Nicatalytic pyrolysis/reforming of waste tires. Waste Management & Research, 35(10), 1045–1054.
  • 34. Zhou, Y., Wang, Y., Fan, L., Dai, L.; Duan, D., Liu, Y., Ruan, R., Zhao, Y., Yu, Z., Hu, Y. 2017. Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soap stock for bio-oil production. J. Anal. Appl. Pyrolysis. 124, 35–41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a08720e-53e5-419d-8184-764ee37507eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.